The market of biobased products obtainable via fermentation processes has steadily increased over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC), whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is still hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a means to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying EF are still largely unknown. This review provides a comprehensive overview of recent literature studies including both AEF and CEF examples using pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biotechadv.2022.107950 | DOI Listing |
Sci Rep
December 2024
College of Biological Sciences and Technology, YiLi Normal University, Yining, 835000, People's Republic of China.
Ice wine is produced from concentrated grape juice obtained by the natural freezing and pressing of grapes. The high sugar content of this juice has an impact on fermentation. To investigate the impact of the initial sugar concentration on the fermentation of ice wine, the initial sugar concentration of Vidal ice grape juice was adjusted to 370, 450, 500 and 550 g/L by the addition of glucose.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China. Electronic address:
Cheese-associated microbiota and their interactions are crucial in determining the properties of cheese. This study aimed to compare the effects of different starter cultures on Cheddar cheese production using texture analysis, electronic sensory evaluation, and both volatile and non-volatile metabolomics. Specifically, we examined Lactococcus lactis BL19 and Lactococcus cremoris LC99, both individually and in combination.
View Article and Find Full Text PDFFood Chem
December 2024
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of life and health sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China.
Dough fermentation is an effective method for selenium conversion. This study investigated the effects of low NaSeO concentrations on the morphology, texture, fermentation properties, Se species, Se bioaccessibility, and antioxidant capacity of two types of yeast-leaved steamed bread. The results indicated that NaSeO did not significantly affect the specific volume; but it did result in increased hardness.
View Article and Find Full Text PDFWater Res
December 2024
Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. Electronic address:
As a greenhouse gas, massive carbon dioxide (CO) has been generated due to organic matter degradation in wastewater treatment processes. Microbial gas fermentation offers a promising approach to capture CO and generate various valuable chemicals. However, limited studies have achieved branched or medium-chain fatty acids production via gas fermentation.
View Article and Find Full Text PDFJ Food Sci
December 2024
College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China.
Gut bacterial lipopolysaccharide (LPS) could be released into the circulatory system via the gut-liver axis and cause inflammatory immune response, while Cordyceps militaris polysaccharide (CMP40) has been reported to be effective in alleviating this inflammatory response. In this study, the effects of CMP40 gut fermentation on internal LPS structure formation and the subsequent immune response were explored. Results showed that CMP40 could change antigenicity of LPS of Vibrio parahaemolyticus, Salmonella enterica, and enterotoxigenic Escherichia coli, indicated by a reduced level of NO, IL-1β, IL-6, and TNF-α.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!