The kappa opioid receptor is a known regulator of ethanol consumption, but the molecular mechanisms behind its actions have been underexplored. The scaffolding protein β-arrestin 2 has previously been implicated in driving ethanol consumption at the related delta opioid receptor and has also been suggested to be a driver behind other negative kappa opioid receptor mediated effects. Here, we used kappa opioid agonists with different efficacies for recruiting β-arrestin 2 and knockout animals to determine whether there is a role for β-arrestin 2 in the modulation of voluntary ethanol consumption by the kappa opioid receptor. We find that an agonist with low β-arrestin 2 efficacy more consistently lowers ethanol consumption than agonists with high efficacy for β-arrestin 2. However, knockdown of β-arrestin 2 amplifies the ethanol consumption-promoting effects of the arrestin-recruiting kappa agonists U50,488 and nalfurafine. We control for potentially confounding sedative effects at the kappa opioid receptor and find that β-arrestin 2 is not necessary for kappa opioid receptor-mediated sedation, and that sedation does not correlate with effects on ethanol consumption. Overall, the results suggest a complex relationship between agonist profile, sex, and kappa opioid receptor modulation of ethanol consumption, with little role for kappa opioid receptor-mediated sedation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064988 | PMC |
http://dx.doi.org/10.1016/j.pbb.2022.173377 | DOI Listing |
Br J Anaesth
January 2025
Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA. Electronic address:
The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.
View Article and Find Full Text PDFNat Chem Biol
January 2025
The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Health Administration, The College of Health Professions, Central Michigan University, Mt Pleasant, MI, United States.
Pharmaceuticals (Basel)
November 2024
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de Mexico 04510, Mexico.
Trigeminal neuralgia (TN) is chronic pain caused by damage to the somatosensorial system on the trigeminal nerve or its branches, which involves peripheral and central dysfunction pain pathways. Trigeminal pain triggers disruptive pain in regions of the face, including within and around the mouth. Besides clinical experiences, translating the language of suffering into scientific terminology presents substantial challenges.
View Article and Find Full Text PDFCells
December 2024
Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.
The nociceptin receptor (NOP) and nociceptin are involved in the pathways of pain and inflammation. The potent role of nuclear factor-κB (NFκB) in the modulation of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β on the nociceptin system in human THP-1 cells under inflammatory conditions were investigated. Cells were stimulated without/with phorbol-myristate-acetate (PMA), TNF-α, IL-1β, or PMA combined with individual cytokines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!