The present study evaluated the effects of maternal dietary energy intake and starch-to-fat ratio during late gestation on the performance and lipid metabolism of sows and their offspring. On day 84 of gestation, 80 Landrace × Yorkshire primiparous sows were assigned to 2 × 2 factorial arrangements according to body weight following a randomized complete block design. The factors were daily energy intake (8,375 kcal ME/d [CE] vs. 9,600 kcal ME/d [HE]) and dietary starch-to-fat ratio (10:1 [CR] vs. 15:1 [HR]). All sows were fed one of four diets from day 85 of gestation until farrowing. Data were analyzed using the GLM procedure in SPSS. High energy intake increased the body weight of sows on day 110 of gestation (P = 0.031) as well as the weight of piglets at birth (P = 0.018). Increased energy intake elevated the plasma triglyceride concentrations in sows (P = 0.027) and piglets (P = 0.044). Maternal high energy intake altered the liver metabolome of newborn piglets in terms of metabolites related to carbohydrate and linoleic acid metabolism. Moreover, maternal high energy intake increased hepatic total cholesterol (P = 0.023) and triglyceride (P = 0.026) concentration in newborn piglets. Furthermore, maternal high energy intake significantly increased the transcript abundance of fatty acid synthase (FAS; P = 0.001) and protein abundance of phosphorylated protein kinase B (P =0.001) in the liver of newborn piglets. A high starch-to-fat ratio reduced low-density lipoprotein cholesterol (LDL-C) concentration in the plasma of sows (P = 0.044) and newborn piglets (P = 0.048) as well as in the liver of newborn piglets (P = 0.015). Furthermore, maternal high starch-to-fat ratio increased the transcript abundances of FAS (P = 0.004) in newborn piglets. In conclusion, high daily energy intake of sows increased the birth weight of newborn piglets. Moreover, maternal high daily energy intake and high dietary starch-to-fat ratio improved the lipid metabolism of newborn piglets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030130 | PMC |
http://dx.doi.org/10.1093/jas/skac033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!