Small extracellular vesicles (sEVs) have been reported to play important roles in cell-to-cell communication and are promising biomarkers for the early diagnosis of infections. Therefore, it is in high demand to develop a method that can integrate easy-to-operate sEV isolation and sensitive quantification. We herein propose a novel detection scaffold for sEV isolation low-speed centrifugation and the quantification of sEVs through DNAzyme-based signal amplification. The detection scaffold is established through dumbbell probe-based RCA (rolling circle amplification), containing repeated CD63 aptamer sections and DNAzyme sections. The original state of the DNAzyme section is locked in a hairpin structure in the detection scaffold. In the presence of sEVs, the CD63 aptamer recognizes and binds with sEVs, leading to the aggregation of sEVs, which can be isolated by low-speed centrifugation and the exposure of the DNAzyme section. After the catalytic fluorescence signal generation from the DNAzyme-based molecular beacon (MB) cleavage, the method exhibited a detection range of 10 to 10 particles per μL. Considering the high sensitivity and wash-free and easy-to-operate features, the strategy reported herein paves a new avenue for the effective determination of sEVs and other membrane biomolecules in fundamental and applied research.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ay00019aDOI Listing

Publication Analysis

Top Keywords

detection scaffold
16
rolling circle
8
circle amplification
8
small extracellular
8
sev isolation
8
low-speed centrifugation
8
cd63 aptamer
8
detection
6
sevs
6
dumbbell structure
4

Similar Publications

Amyloid fibrils (AFs) are highly ordered nanostructures formed through the self-assembly of proteins under specific conditions. Due to their unique properties, AFs have garnered significant attention as biomaterials over the past decade. Nevertheless, the increasing reliance on animal proteins for AFs production raises sustainability concerns, highlighting the need for a transition to plant-based proteins as more environmentally friendly feedstocks.

View Article and Find Full Text PDF

A High-Efficiency Electrochemical Biosensor for the Detection of Mucosal-Associated Invariant T Cells.

Anal Chem

December 2024

Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.

Mucosal-associated invariant T (MAIT) cells exhibit significant potential in the assessment of tumor development and immunotherapy. However, there is currently no convenient and efficient method to analyze the quantitative changes of MAIT cells during cancer development and treatment, which has not been extensively studied. Here, we report an electrochemical biosensor designed to efficiently monitor MAIT cells in peripheral blood by simultaneously recognizing Vα7.

View Article and Find Full Text PDF

Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) plays a crucial role in inflammation and has been implicated in cancer development. Understanding the behavior of COX-2 in different cellular contexts is essential for developing targeted therapeutic strategies. In this study, we investigate the fluorescence spectrum of a fluorogenic probe, NANQ-IMC6, when bound to the active site of human COX-2 in both its monomeric and homodimeric forms.

View Article and Find Full Text PDF

Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!