The levitated sensor detector (LSD) is a compact resonant gravitational-wave (GW) detector based on optically trapped dielectric particles that is under construction. The LSD sensitivity has more favorable frequency scaling at high frequencies compared to laser interferometer detectors such as LIGO and VIRGO. We propose a method to substantially improve the sensitivity by optically levitating a multilayered stack of dielectric discs. These stacks allow the use of a more massive levitated object while exhibiting minimal photon recoil heating due to light scattering. Over an order of magnitude of unexplored frequency space for GWs above 10 kHz is accessible with an instrument 10 to 100 meters in size. Particularly motivated sources in this frequency range are gravitationally bound states of the axion from quantum chromodynamics with decay constant near the grand unified theory scale that form through black hole superradiance and annihilate to GWs. The LSD is also sensitive to GWs from binary coalescence of sub-solar-mass primordial black holes and as-yet unexplored new physics in the high-frequency GW window.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.111101 | DOI Listing |
In space-based gravitational wave detection, establishing ultra-long-distance and ultra-high-precision laser links between satellites is achieved through the laser acquisition and tracking system. The laser spot centroid positioning method, which offers low computational complexity and strong adaptability to beam shape, is currently the core measurement method during the laser acquisition phase. However, due to various interference factors encountered in practical tests, this algorithm often falls short of meeting the extremely high requirements.
View Article and Find Full Text PDFLiving Rev Relativ
January 2025
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX UK.
In the recent years, primordial black holes (PBHs) have emerged as one of the most interesting and hotly debated topics in cosmology. Among other possibilities, PBHs could explain both some of the signals from binary black hole mergers observed in gravitational-wave detectors and an important component of the dark matter in the Universe. Significant progress has been achieved both on the theory side and from the point of view of observations, including new models and more accurate calculations of PBH formation, evolution, clustering, merger rates, as well as new astrophysical and cosmological probes.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.
We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Center for Gravitational Wave Experiment, National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
Since Einstein's prediction regarding the existence of gravitational waves was directly verified by the ground-based detector Advanced LIGO, research on gravitational wave detection has garnered increasing attention. To overcome limitations imposed by ground vibrations and interference at arm's length, a space-based gravitational wave detection initiative was proposed, which focuses on analyzing a large number of waves within the frequency range below 1 Hz. Due to the weak signal intensity, the TMs must move along their geodesic orbit with a residual acceleration less than 10 m/s/Hz.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
High purity silicon is considered as the test mass material for future cryogenic gravitational-wave detectors, in particular Einstein Telescope-low frequency and LIGO Voyager [(LIGO) Laser Interferometer Gravitational-Wave Observatory]. To reduce the thermal noise of the test masses, it is necessary to study the sources of corresponding losses. Mechanical resonators with frequencies 300 Hz-6 kHz are successfully used for studying, for example, losses in optical coatings of the test mass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!