Enhancement of the Nonresonant Streaming Instability by Particle Collisions.

Phys Rev Lett

Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France.

Published: March 2022

Streaming cosmic rays can power the exponential growth of a seed magnetic field by exciting a nonresonant instability that feeds on their bulk kinetic energy. By generating the necessary turbulent magnetic field, it is thought to play a key role in the confinement and acceleration of cosmic rays at shocks. In this Letter we present hybrid-particle-in-cell simulations of the nonresonant mode including Monte Carlo collisions, and investigate the interplay between the pressure anisotropies produced by the instability and particle collisions in the background plasma. Simulations of poorly ionized plasmas confirm the rapid damping of the instability by proton-neutral collisions predicted by linear fluid theory calculations. In contrast we find that Coulomb collisions in fully ionized plasmas do not oppose the growth of the magnetic field, but under certain conditions suppress the pressure anisotropies and actually enhance the magnetic field amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.128.115101DOI Listing

Publication Analysis

Top Keywords

magnetic field
16
instability particle
8
particle collisions
8
cosmic rays
8
pressure anisotropies
8
ionized plasmas
8
collisions
5
enhancement nonresonant
4
nonresonant streaming
4
instability
4

Similar Publications

A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:

The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).

View Article and Find Full Text PDF

Among the numerous measurements carried out during a well-logging procedure, the Nuclear Magnetic Resonance (NMR) assessment is one of the fundamental analyses in determining the economic viability of a well for the oil industry. Nowadays, two reliable approaches, Wireline Logging (WL) and Logging While Drilling (LWD), stand out. WL comprises the acquisition of NMR data under static conditions.

View Article and Find Full Text PDF

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

Realizing field-free switching of perpendicular magnetization by spin-orbit torques is crucial for developing advanced magnetic memory and logic devices. However, existing methods often involve complex designs or hybrid approaches, which complicate fabrication and affect device stability and scalability. Here, we propose a novel approach using -polarized spin currents for deterministic switching of perpendicular magnetization through interfacial engineering.

View Article and Find Full Text PDF

Multifunctional hardware technologies for neuromorphic computing are essential for replicating the complexity of biological neural systems, thereby improving the performance of artificial synapses and neurons. Integrating ionic and spintronic technologies offers new degrees of freedom to modulate synaptic potentiation and depression, introducing novel magnetic functionalities alongside the established ionic analogue behavior. We demonstrate that magneto-ionic devices can perform as synaptic elements with dynamically tunable depression linearity controlled by an external magnetic field, a functionality reminiscent of neuromodulation in biological systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!