A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions.

ACS Nano

Materials Science and Engineering Program, Walker Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

Published: May 2022

Synthesizing urea from nitrate and carbon dioxide through an electrocatalysis approach under ambient conditions is extraordinarily sustainable. However, this approach still lacks electrocatalysts developed with high catalytic efficiencies, which is a key challenge. Here, we report the high-efficiency electrocatalytic synthesis of urea using indium oxyhydroxide with oxygen vacancy defects, which enables selective C-N coupling toward standout electrocatalytic urea synthesis activity. Analysis by operando synchrotron radiation-Fourier transform infrared spectroscopy showcases that *CONH protonation is the potential-determining step for the overall urea formation process. As such, defect engineering is employed to lower the energy barrier for the protonation of the *CONH intermediate to accelerate urea synthesis. Consequently, the defect-engineered catalyst delivers a high Faradaic efficiency of 51.0%. In conjunction with an in-depth study on the catalytic mechanism, this design strategy may facilitate the exploration of advanced catalysts for electrochemical urea synthesis and other sustainable applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c01956DOI Listing

Publication Analysis

Top Keywords

urea synthesis
16
ambient conditions
8
urea
7
synthesis
5
defect engineered
4
engineered electrocatalyst
4
electrocatalyst promotes
4
promotes high-efficiency
4
high-efficiency urea
4
synthesis ambient
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

National Council of Scientific and Technical Research (CONICET/UNLP), La Plata, Argentina.

Background: Sporadic Alzheimer's Disease (sAD) is the most prevalent progressive neurodegenerative disease worldwide, without a cure. We propose to investigate therapies that contribute to the current state of this problem using a model of sAD in rats based on a single intracerebroventricular (icv) injection of streptozotocin (STZ). In this sense, thymulin (originally known as serum thymic factor, FTS), a thymic peptide, emerges as a potential therapeutic agent due to its proven anti-inflammatory effects.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

National Council of Scientific and Technical Research (CONICET/UNLP), La Plata, Argentina.

Background: Sporadic Alzheimer's disease (sAD) is the most common form of dementia, characterized by a progressive decline in cognitive function and, cortical and hippocampal atrophy. Our objective is to develop neuroprotective therapies that promote the homeostatic and modulatory properties of astrocytes, and enhance their protective functions. Glial-derived neurotrophic factor (GDNF) has emerged as a promising factor for its ability to promote neuronal survival and function.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pharmacology, Central University of Punjab, Bathinda, Bathinda, Punjab, India.

Background: In previous studies, we found that quetiapine activates the AKT signaling which further inhibits the action of GSK3β. Quetiapine has been reported to possess neuroprotective potential in schizophrenia and other neurodegenerative models.

Method: On day 1 and 3, rats received bilateral intracerebroventricular (i.

View Article and Find Full Text PDF

Background: Neurofibrillary tangles (NFT), consisting of hyperphosphorylated tau aggregates, are one of the major pathological hallmarks of Alzheimer's disease (AD). The burden of NFTs correlates with cognitive decline, and in vivo detection of NFT may help predict the clinical progression of AD. Mass spectrometry-based proteomic analysis of brain regions affected by NFTs holds the potential to unveil the molecular mechanisms underlying tau pathogenesis and uncover novel diagnostic/prognostic biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Background: The presence of Tau pathology is strongly associated with the clinical symptoms and cognitive decline found in Alzheimer's disease (AD), suggesting that targeting pathological tau may be a more effective therapeutic approach. Microglia have been implicated in tauopathies as their activation is strongly related to the progression of tau phosphorylation and aggregation potentially due to dysfunctional lysosomal activity. Cannabinoid type 2 receptors (CB2) are highly expressed in immune cells and upregulated in activated microglia under conditions of neurologic disease, such as AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!