Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Face masks, which serve as personal protection equipment, have become ubiquitous for combating the ongoing COVID-19. However, conventional electrostatic-based mask filters are disposable and short-term effective with high breathing resistance, causing respiratory ailments and massive consumption (129 billion monthly), intensifying global environmental pollution. In an effort to address these challenges, the introduction of a piezoelectric polymer was adopted to realize the charge-laden melt-blown via the melt-blowing method. The charge-laden melt-blown could be applied to manufacture face masks and to generate charges triggered by mechanical and acoustic energy originated from daily speaking. Through an efficient and scalable industrial melt-blown process, our charge-laden mask is capable of overcoming the inevitable electrostatic attenuation, even in a high-humidity atmosphere by long-wearing (prolonging from 4 to 72 h) and three-cycle common decontamination methods. Combined with outstanding protective properties (PM filtration efficiency >99.9%), breathability (differential pressure <17 Pa/cm), and mechanical strength, the resultant charge-laden mask could enable the decreased replacement of masks, thereby lowering to 94.4% of output masks worldwide (∼122 billion monthly) without substituting the existing structure or assembling process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c01077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!