A catalyst-free microwave-assisted annulation protocol for the preparation of biologically interesting pyrido-fused quinazolinones and pyrido[1,2-]benzimidazoles is developed. This reaction involves the [3 + 3] annulation of various quinazolinones or benzimidazoles with 3-formylchromones to yield functionalized 11-pyrido[2,1-]quinazolin-11-one and pyrido[1,2-] benzimidazole derivatives. This approach is successfully extended to the construction of various pyrazolo[4,3-]pyrido[1,2-]pyrimidin-10(1)-ones. The present approach is complementary to the existing synthetic methodologies and offers a rapid and facile approach with a broad substrate scope, good yields, catalyst-free conditions, and a high functional group tolerance. The optimal synthesized compound is also employed as an "on-off" photoluminescent probe for the selective detection of Fe and Ag metal ions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ob00257dDOI Listing

Publication Analysis

Top Keywords

microwave-assisted annulation
8
annulation construction
4
construction pyrido-fused
4
pyrido-fused heterocycles
4
heterocycles application
4
application photoluminescent
4
photoluminescent chemosensors
4
chemosensors catalyst-free
4
catalyst-free microwave-assisted
4
annulation protocol
4

Similar Publications

General procedures for the rhodium-catalyzed annulation of aryl/heteroaryl -pivaloyl hydroxamic acids and norbornadiene have been developed. Employing norbornadiene as an acetylene equivalent enables utilization of diverse heterocyclic substrates for this transformation which fail to react or undergo competitive Lossen rearrangement under previously reported conditions. Microwave heating significantly reduces reaction times compared to conventional protocols and allows a one-step process to be realized.

View Article and Find Full Text PDF

This study demonstrates quick access to heteroatom-embodied complex fused polycyclic frameworks through a palladium-catalyzed domino process facilitated by microwave-assisted crossover annulation of -alkynylarylhalides and dihydrobenzofurans derivatives. The overall success of this process lies in the careful design of dihydrobenzofuran precursors that direct the initial palladium-mediated annulation step to proceed in a highly regioselective manner to furnish a single regioisomeric product. Notably, this one-pot method has witnessed good substrate scope and has furnished products with excellent yields.

View Article and Find Full Text PDF

The development of building units for π-conjugated polymers is a driving force in advancing the field of organic electronics. In this study, we designed and synthesized dithienonaphthobisthiadiazole (TNT) as a thiophene-fused acceptor (A) building unit and two TNT-based π-conjugated polymers named PTNT2T and PTNT1-F. We found that the microwave-assisted thiophene annulation reaction (thienannulation) of arylethynylated naphthobisthiadiazole (NTz) C-H functionalization effectively produced TNT moieties.

View Article and Find Full Text PDF

In this dispensation of rapid scientific and technological advancements, significant efforts are being made to curb health-related diseases. Research discoveries have highlighted the value of heterocyclic compounds, particularly thiadiazole derivatives, due to their diverse pharmacological activities. These compounds play a crucial role in therapeutic medicine and the development of effective drugs.

View Article and Find Full Text PDF

An efficient Ru(II)-catalyzed C-H functionalization protocol for 2-arylbenzoazoles as the directing group and sulfoxonium ylide has been developed. Gratifyingly, concomitant annulation was observed when 3-(benzo[]azol-2-yl) phenol was used, enabling the construction of benzofuran conjugates. Notably, the utilization of water as the solvent and an energy efficient approach makes the reaction greener, contributing to overall sustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!