Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane.

Biomacromolecules

Department of Chemistry, A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Material Systems, 55128 Mainz, Germany.

Published: April 2022

Cellulose nanofibrils (CNFs) have attracted attention as building blocks for sustainable materials owing to their high performance and the advantages of their abundant natural resources. Bioinspired CNF/polymer nanocomposites, consisting of a soft polymer phase and a high fraction (>50 wt %) of CNF reinforcement, have been focused on excellent mechanical properties, including Young's modulus, mechanical strength, and toughness, mimicking the energy dissipation system in nature. However, efficient softening and toughening with a small amount of the soft phase is still a challenge because a large amount of the polymer phase (nearly 50%) is still required to provide ductility and toughness. Here, we describe a topological strategy in the polymer phase for efficient toughening of bioinspired CNF nanocomposites with a water-soluble comb polyurethane (PU). The comb PU provided higher elongation at break and more efficient flexibility for the nanocomposite than the linear PU, even at a small content. Moreover, CNF nanocomposites with 30 wt % of PU content and tetrabutylammonium as bulky counterions showed enhanced toughness (180% higher) and strain at break (250% higher) when compared to pure CNF due to the promotion of slippage between nanofibrils. Scanning electron microscopy (SEM) images of the fracture surface for CNF/comb PU nanocomposites displayed the pull-out of mesoscale layers and nanofibrils, supporting that the comb topology promotes the slippage between fibrils. Furthermore, the rheological study revealed that the comb PU has an entanglement plateau modulus lower than linear PU by 1 order of magnitude, related to the loosened entanglements. Our study establishes an efficient softening and toughening strategy while using small amounts of polymer phase addition, promoting interfibrillar slippage with the loosely entangled comb PU phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.1c01625DOI Listing

Publication Analysis

Top Keywords

polymer phase
16
efficient softening
12
softening toughening
12
comb polyurethane
8
cnf nanocomposites
8
comb
6
phase
6
efficient
5
nanocomposites
5
toughening
4

Similar Publications

Molecularly Designed and Nanoconfined Polymer Electronic Materials for Skin-like Electronics.

ACS Cent Sci

December 2024

Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.

Stretchable electronics have seen substantial development in skin-like mechanical properties and functionality thanks to the advancements made in intrinsically stretchable polymer electronic materials. Nanoscale phase separation of polymer materials within an elastic matrix to form one-dimensional nanostructures, namely nanoconfinement, effectively reduces conformational disorders that have long impeded charge transport properties of conjugated polymers. Nanoconfinement results in enhanced charge transport and the addition of skin-like properties.

View Article and Find Full Text PDF

Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.

View Article and Find Full Text PDF

Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.

View Article and Find Full Text PDF

The nacre formation process is a fascinating phenomenon involving mineral phase transformations, self-assembly processes, and protein-mineral interactions, resulting in a hierarchical structure that exhibits outstanding mechanical properties. However, this process is only partially known, and many aspects of nacre structure are not well understood, especially at the molecular scale. To understand the interplay between components-aragonite, protein and chitin-of the structure of nacre observed experimentally, we investigate the interactions of a peptide that is part of the protein lustrin A, identified in the nacreous layer of the shell of the abalone Haliotis rufescens, with the (001) crystal surface of aragonite and the chitin molecule.

View Article and Find Full Text PDF

Long-acting injectable in situ forming implants: Impact of polymer attributes and API.

Int J Pharm

December 2024

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA. Electronic address:

Poly(DL-lactide-co-glycolide) (PLGA) and N-methyl-2-pyrrolidone (NMP)-based in situ forming implants are liquid formulations that solidify through phase separation following injection into the body. Drug is dissolved or suspended in the final formulation liquid prior to injection. Depending on the polymers used, the depots formed can deliver drug over different periods of time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!