Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selective oxidation of methane to oxygenates with O under mild conditions remains a great challenge. Here we report a ZSM-5 (Z-5) supported PdCu bimetallic catalyst (PdCu/Z-5) for methane conversion to oxygenates by reacting with O in the presence of H at low temperature (120 °C). Benefiting from the co-existence of PdO nanoparticles and Cu single atoms via tandem catalysis, the PdCu/Z-5 catalyst exhibited a high oxygenates yield of 1178 mmol g h (mmol of oxygenates per gram Pd per hour) and at the same time high oxygenates selectivity of up to 95 %. Control experiments and mechanistic studies revealed that PdO nanoparticles promoted the in situ generation of H O from O and H , while Cu single atoms not only accelerated the activation of H O for the generation of abundant hydroxyl radicals (⋅OH) from H O decomposition, but also enabled the homolytic cleavage of CH by ⋅OH to methyl radicals (⋅CH ). Subsequently, the ⋅OH reacted quickly with the ⋅CH to form CH OH with high selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202204116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!