Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cortico-cortical subnetworks was targeted by a distinct group of PFC subtypes defined by their first-order axon collaterals. Further analysis unraveled topographic rules of soma distribution within PFC, first-order collateral branch point-dependent target selection and terminal arbor distribution-dependent target subdivision. Furthermore, we obtained a high-precision hierarchical map within PFC and three distinct functionally related PFC modules, each enriched with internal recurrent connectivity. Finally, we showed that each transcriptome subtype corresponds to multiple projectome subtypes found in different PFC subregions. Thus, whole-brain single-neuron projectome analysis reveals organization principles of axon projections within and outside PFC and provides the essential basis for elucidating neuronal connectivity underlying diverse PFC functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41593-022-01041-5 | DOI Listing |
J Pain
December 2024
Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia. Electronic address:
The perinatal period encompasses a critical window for neurodevelopment that renders the brain highly responsive to experience. Trauma, such as intimate partner violence (IPV) and early life stress/neglect, during this period negatively affects physical and mental health outcomes, including increasing ones risk for chronic pain. Although epigenetic programming likely contributes, the mechanisms that drive the relationship between perinatal trauma and adverse health outcomes, are not fully understood.
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
School of Physical Education, Shanghai University of Sport, Shanghai, China.
Long-term training enables professional athletes to develop concentrated and efficient neural network organizations for specific tasks. This study used functional near-infrared spectroscopy to investigate task performance, brain functional characteristics, and their relationships in footballers during sport-specific motor-cognitive processes. Twenty-four footballers (athlete group, with 18 remaining of good signal quality) and 20 non-footballers (control group, with 16 remaining) completed four tasks: a single task (trigger buttons corresponding to the appearance direction of teammates with kicking actions), an N-back direction task, a dual task, and an N-back digit task.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States.
Sports-related concussions (SRCs) pose significant challenges to college-aged athletes, eliciting both immediate symptoms and subacute cognitive and motor function impairment. While most symptoms and impairments resolve within weeks, athletes with repeat SRCs may experience heightened risk for prolonged recovery trajectories, future musculoskeletal injuries, and long-term neurocognitive deficits. This study aimed to investigate the impact of repeat SRCs on dual task performance and associated neural recruitment using functional near-infrared spectroscopy (fNIRS).
View Article and Find Full Text PDFPsychoneuroendocrinology
December 2024
Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China. Electronic address:
Chronic stress is involved in pathophysiology of depression, and causes some neurochemical alterations in brain. Both mitochondrial dysfunction and neuroinflammation are implicated in mediating the depression-like behavior. The objectives of present study were, at first, to confirm that chronic unpredictable mild stress (CUMS) induces depression-like behavior and alters mitochondrial function and inflammatory responses within the brain, and then to explore the role of mitochondria in the development of this depression-like behavior.
View Article and Find Full Text PDFFront Behav Neurosci
December 2024
Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States.
Safety learning during threat and adversity is critical for behavioral adaptation, resiliency, and survival. Using a novel mouse paradigm involving thermal threat, we recently demonstrated that safety learning is highly susceptible to social isolation stress. Yet, our previous study primarily considered male mice and did not thoroughly scrutinize the relative impacts of stress on potentially distinct defensive mechanisms implemented by males and females during the thermal safety task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!