Understanding physical processes prior to and during volcanic eruptions has improved significantly in recent years. However, uncertainties about subsurface structures distorting observed signals and undetected processes within the volcano prevent volcanologists to infer subtle triggering mechanisms of volcanic phenomena. Here, we demonstrate that distributed acoustic sensing (DAS) with optical fibres allows us to identify volcanic events remotely and image hidden near-surface volcanic structural features. We detect and characterize strain signals associated with explosions and locate their origin using a 2D-template matching between picked and theoretical wave arrival times. We find evidence for non-linear grain interactions in a scoria layer of spatially variable thickness. We demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms. We identify very small volcanic events, which we relate to fluid migration and degassing. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971480 | PMC |
http://dx.doi.org/10.1038/s41467-022-29184-w | DOI Listing |
Sleep Med
December 2024
Department of Psychiatry & Division of Sleep Medicine, AIIMS Rishikesh, India.
Among the mental health outcomes and disaster types (determined by damage to life, property, long-term consequences, displacement, and unpredictability), floods are associated with anxiety and sleep problems, mudslides with anxiety and mood disturbance, volcanic eruptions with acute stress reactions, and earthquakes with anxiety, depression, and physical complaints. Disasters such as tunnel collapse are unique as it involves the healthy, without loss of personal property or displacement; hence, they can have very different health-related outcomes. In this study, we explore mental health and sleep-related issues in workers rescued from an under-construction collapsed tunnel trapped for 17 days.
View Article and Find Full Text PDFBackground: Cholera remains a major (and increasing) global public health problem. Goma, in the eastern Democratic Republic of Congo (DRC), has been a major cholera hotspot in Africa since 1994 and is currently experiencing one of the largest outbreaks in the world. This article contributes to the existing scholarship on cholera risk by utilizing a variety of qualitative research methods.
View Article and Find Full Text PDFAn Acad Bras Cienc
December 2024
Universidade Federal do Rio Grande do Sul, Centro Polar e Climático, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
This study investigated the chemical content of a shallow snow core (4.95 m) named TT 6, collected during a Brazilian traverse of the West Antarctic Ice Sheet in the 2014/2015 Austral summer. Stable isotope ratios (δD and δ18O) and ionic content, determined at the Centro Polar e Climático of the Federal University of Rio Grande do Sul (CPC/UFRGS), were used to date the core and reconstruct the climatic conditions at the site.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
Alongside the Chicxulub meteorite impact, Deccan volcanism is considered a primary trigger for the Cretaceous-Paleogene (K-Pg) mass extinction. Models suggest that volcanic outgassing of carbon and sulfur-potent environmental stressors-drove global temperature change, but the relative timing, duration, and magnitude of such change remains uncertain. Here, we use the organic paleothermometer MBT' and the carbon-isotope composition of two K-Pg-spanning lignites from the western Unites States, to test models of volcanogenic air temperature change in the ~100 kyr before the mass extinction.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Medical Laboratory Science, Eastern Kentucky University, Dizney 219, Richmond, KY, 40475, USA.
Despite ample evidence that extensive water-rock interactions occurred under a CO-dominated atmosphere on early Mars, carbonate minerals are relatively rare at the surface. One possibility to explain this scarcity is that carbonates were initially abundant, but were later destroyed when atmospheric conditions changed, particularly as a result of volcanism releasing large volumes of sulfur dioxide SO into the atmosphere. However, despite some early theoretical and experimental results, no study has investigated the stability of the most common carbonates (Ca, Mg and Fe) in the presence of abundant SO gas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!