Background: Microalgae are emerging as promising sustainable sources for biofuels, biostimulants in agriculture, soil bioremediation, feed and human nutrients. Nonetheless, the molecular mechanisms underpinning microalgae physiology and the biosynthesis of compounds of biotechnological interest are largely uncharacterized. This hinders the development of microalgae full potential as cell-factories. The recent application of omics technologies into microalgae research aims at unraveling these systems. Nevertheless, the lack of specific tools for analysing omics raw data generated from microalgae to provide biological meaningful information are hampering the impact of these technologies. The purpose of ALGAEFUN with MARACAS consists in providing researchers in microalgae with an enabling tool that will allow them to exploit transcriptomic and cistromic high-throughput sequencing data.
Results: ALGAEFUN with MARACAS consists of two different tools. First, MARACAS (MicroAlgae RnA-seq and Chip-seq AnalysiS) implements a fully automatic computational pipeline receiving as input RNA-seq (RNA sequencing) or ChIP-seq (chromatin immunoprecipitation sequencing) raw data from microalgae studies. MARACAS generates sets of differentially expressed genes or lists of genomic loci for RNA-seq and ChIP-seq analysis respectively. Second, ALGAEFUN (microALGAE FUNctional enrichment tool) is a web-based application where gene sets generated from RNA-seq analysis as well as lists of genomic loci from ChIP-seq analysis can be used as input. On the one hand, it can be used to perform Gene Ontology and biological pathways enrichment analysis over gene sets. On the other hand, using the results of ChIP-seq data analysis, it identifies a set of potential target genes and analyses the distribution of the loci over gene features. Graphical representation of the results as well as tables with gene annotations are generated and can be downloaded for further analysis.
Conclusions: ALGAEFUN with MARACAS provides an integrated environment for the microalgae research community that facilitates the process of obtaining relevant biological information from raw RNA-seq and ChIP-seq data. These applications are designed to assist researchers in the interpretation of gene lists and genomic loci based on functional enrichment analysis. ALGAEFUN with MARACAS is publicly available on https://greennetwork.us.es/AlgaeFUN/ .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973887 | PMC |
http://dx.doi.org/10.1186/s12859-022-04639-5 | DOI Listing |
BMC Bioinformatics
March 2022
Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de La Cartuja, Avenida Américo Vespucio 49, 41092, Seville, Spain.
Background: Microalgae are emerging as promising sustainable sources for biofuels, biostimulants in agriculture, soil bioremediation, feed and human nutrients. Nonetheless, the molecular mechanisms underpinning microalgae physiology and the biosynthesis of compounds of biotechnological interest are largely uncharacterized. This hinders the development of microalgae full potential as cell-factories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!