Network-based approaches offer a powerful framework to evaluate microbial community organization and function as it relates to a variety of environmental processes. Emerging studies are exploring network theory as a method for data integration that is likely to be critical for the integration of 'omics' data using systems biology approaches. Intricacies of network theory and methodological and computational complexities in network construction, however, impede the use of these tools for translational science. We provide a perspective on the methods of network construction, interpretation and emerging uses for these techniques in understanding host-microbiota interactions.

Download full-text PDF

Source
http://dx.doi.org/10.2217/fmb-2021-0219DOI Listing

Publication Analysis

Top Keywords

network-based approaches
8
microbial community
8
network theory
8
network construction
8
approaches investigation
4
investigation microbial
4
community structure
4
structure function
4
function metagenomics-based
4
metagenomics-based data
4

Similar Publications

A Neural-Network-Based Mapping and Optimization Framework for High-Precision Coarse-Grained Simulation.

J Chem Theory Comput

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction).

View Article and Find Full Text PDF

Clinical observations indicate a pronounced exacerbation of Cardiovascular Diseases (CVDs) in individuals grappling with Alcohol Use Disorder (AUD), suggesting an intricate interplay between these maladies. Pinpointing shared risk factors for both conditions has proven elusive. To address this, we pioneered a sophisticated bioinformatics framework and network-based strategy to unearth genes exhibiting aberrant expression patterns in both AUD and CVDs.

View Article and Find Full Text PDF

Purpose: Temporal lobe epilepsy (TLE) is a brain network disorder closely associated with synaptic loss and has a genetic basis. However, the in vivo whole-brain synaptic changes at the network-level and the underlying gene expression patterns in patients with TLE remain unclear.

Methods: In this study, we utilized a positron emission tomography with the synaptic vesicle glycoprotein 2 A radioligand [F]SynVesT-1 cohort and two independent transcriptome datasets to investigate the topological properties of the synaptic density similarity network (SDSN) in TLE and its correlation with significantly dysregulated risk genes.

View Article and Find Full Text PDF

Book localization is crucial for the development of intelligent book inventory systems, where the high-precision detection of book spines is a critical requirement. However, the varying tilt angles and diverse aspect ratios of books on library shelves often reduce the effectiveness of conventional object detection algorithms. To address these challenges, this study proposes an enhanced oriented R-CNN algorithm for book spine detection.

View Article and Find Full Text PDF

Intrusion Detection Systems (IDSs) are a crucial component of modern corporate firewalls. The ability of IDS to identify malicious traffic is a powerful tool to prevent potential attacks and keep a corporate network secure. In this context, Machine Learning (ML)-based methods have proven to be very effective for attack identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!