Genetics and Plasticity Are Responsible for Ecogeographical Patterns in a Recent Invasion.

Front Genet

Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia.

Published: March 2022

AI Article Synopsis

  • Understanding how phenotype and environment interact helps explain local adaptation and fitness impacts on individuals.
  • Multiple processes, including genetic and epigenetic variations, influence these interactions, making it crucial to identify which environmental factors are most significant.
  • This study investigates invasive starlings in Australia to assess heritability of phenotypic traits and reveals that factors like elevation, temperature, and precipitation significantly affect genetic patterns and phenotypic variations.

Article Abstract

Patterns of covariation between phenotype and environment are presumed to be reflective of local adaptation, and therefore translate to a meaningful influence on an individual's overall fitness within that specific environment. However, these environmentally driven patterns may be the result of numerous and interacting processes, such as genetic variation, epigenetic variation, or plastic non-heritable variation. Understanding the relative importance of different environmental variables on underlying genetic patterns and resulting phenotypes is fundamental to understanding adaptation. Invasive systems are excellent models for such investigations, given their propensity for rapid evolution. This study uses reduced representation sequencing data paired with phenotypic data to examine whether important phenotypic traits in invasive starlings () within Australia appear to be highly heritable (presumably genetic) or appear to vary with environmental gradients despite underlying genetics (presumably non-heritable plasticity). We also sought to determine which environmental variables, if any, play the strongest role shaping genetic and phenotypic patterns. We determined that environmental variables-particularly elevation-play an important role in shaping allelic trends in Australian starlings and may also reinforce neutral genetic patterns resulting from historic introduction regime. We examined a range of phenotypic traits that appear to be heritable (body mass and spleen mass) or negligibly heritable (e.g. beak surface area and wing length) across the starlings' Australian range. Using SNP variants associated with each of these phenotypes, we identify key environmental variables that correlate with genetic patterns, specifically that temperature and precipitation putatively play important roles shaping phenotype in this species. Finally, we determine that overall phenotypic variation is correlated with underlying genetic variation, and that these interact positively with the level of vegetation variation within a region, suggesting that ground cover plays an important role in shaping selection and plasticity of phenotypic traits within the starlings of Australia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963341PMC
http://dx.doi.org/10.3389/fgene.2022.824424DOI Listing

Publication Analysis

Top Keywords

environmental variables
12
genetic patterns
12
phenotypic traits
12
role shaping
12
genetic variation
8
underlying genetic
8
starlings australia
8
patterns
7
genetic
7
variation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!