Long noncoding RNAs (lncRNAs) act as epigenetic regulators in the process of ferroptosis and iron metabolism. This study aimed to identify an iron metabolism-related lncRNA signature to predict osteosarcoma (OS) survival and the immune landscape. RNA-sequencing data and clinical information were obtained from the TARGET dataset. Univariate Cox regression and LASSO Cox analysis were used to develop an iron metabolism-related lncRNA signature. Consensus clustering analysis was applied to identify subtype-based prognosis-related lncRNAs. CIBERSORT was used to analyze the difference in immune infiltration and the immune microenvironment in the two clusters. We identified 302 iron metabolism-related lncRNAs based on 515 iron metabolism-related genes. The results of consensus clustering showed the differences in immune infiltration and the immune microenvironment in the two clusters. Through univariate Cox regression and LASSO Cox regression analysis, we constructed an iron metabolism-related lncRNA signature that included seven iron metabolism-related lncRNAs. The signature was verified to have good performance in predicting the overall survival, immune-related functions, and immunotherapy response of OS patients between the high- and low-risk groups. We identified an iron metabolism-related lncRNA signature that had good performance in predicting survival outcomes and showing the immune landscape for OS patients. Furthermore, our study will provide valuable information to further develop immunotherapies of OS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961878 | PMC |
http://dx.doi.org/10.3389/fgene.2022.816460 | DOI Listing |
Fish Shellfish Immunol
January 2025
Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China. Electronic address:
Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China. Electronic address:
The exposure of humans and animals to environmental compounds is rarely restricted to a single chemical. Unfortunately, very few studies were conducted to determine cadmium and lead combined effect. The aim of this study was to clarify the neurotoxicity induced by combined exposure to lead and cadmium and its mechanism of action.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2024
Department of Endocrinology & Metabolism, Zhuhai Hospital Affiliated with Jinan University, Zhuhai People's Hospital, Zhuhai 519000, China.
Recent research has illuminated the pivotal role of the hypoxia-inducible factor-2α (HIF-2α) / peroxisome proliferator-activated receptor alpha (PPARα) pathway in non-alcoholic fatty liver disease (NAFLD) progression. Meanwhile, HIF-2α was reported that involved in iron regulation, and aberrant iron distribution derived liver lipogenesis. Therefore, we hypothesize that HIF-2a exacerbates fatty liver by affecting iron distribution.
View Article and Find Full Text PDFFront Cardiovasc Med
November 2024
Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China.
Background: Coronary heart disease is a common cardiovascular disease, yferroptosiset its relationship with iron metabolism remains unclear.
Methods: Gene expression data from peripheral blood samples of patients with coronary heart disease and a healthy control group were utilized for a comprehensive analysis that included differential expression analysis, weighted gene co-expression network analysis, gene enrichment analysis, and the development of a logistic regression model to investigate the associations and differences between the groups. Additionally, the CIBERSORT algorithm was employed to examine the composition of immune cell types within the samples.
Orphanet J Rare Dis
November 2024
Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetics Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China.
Background: Cellular iron metabolism is essential for maintaining various biological processes in organisms, and this is influenced by the function of iron-responsive element-binding protein 2 (IRP2), encoded by the IREB2 gene. Since 2019, three cases of a genetic neurodegenerative syndrome resulting from compound heterozygous mutations in IREB2 have been documented, highlighting the crucial role of IRP2 in regulating iron metabolism homeostasis. This study aims to investigate the molecular basis in a single proband born to non-consanguineous healthy parents, presenting with severe psychomotor developmental abnormalities and microcytic anemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!