Purpose: Venous thromboembolism (VTE) comprises deep venous thrombosis (DVT) and pulmonary embolism (PE), which can lead to death. VTE is an insidious disease with no specific symptoms and overlooked readily. We aimed to establish prediction models for VTE in non-oncological urological inpatients to aid urologists to better identify VTE patients.

Patients And Methods: A retrospective analysis of 1453 inpatients was carried out. The risk factors for VTE had been clarified in our previous study. A stepwise regression method was used to screen the relevant influencing factors for VTE and construct a logistic regression prediction model to predict VTE. To validate the accuracy of the model, data from 291 patients from another cohort were used for external validation.

Results: A total of 1453 inpatients were enrolled. Five potential risk factors (previous VTE; treatment with anticoagulants or anti-platelet agents before hospital admission; D-dimer ≥0.89 μg/mL; lower-extremity swelling; chest symptoms) were selected by multivariable analysis with < 0.05. These five risk factors were used to build a logistic regression prediction model. When < 0.1 in the multivariable logistic regression model, two additional risk factors were added: Caprini score ≥5 and complications, and all seven risk factors were used to build another prediction model. Internal verification showed the cutoff values, sensitivity, and specificity of the two models to be 0.02474, 0.941, 0.816 (model 1) and 0.03824, 0.941, and 0.820 (model 2), respectively. Both models had good predictive ability, but prediction accuracy was 43.0% for both when using the data of the additional 291 inpatients in the two models.

Conclusion: Two novel prediction models were built to predict VTE in non-oncological urological inpatients. This is a new method for VTE screening, and internal validation showed a good performance. External validation results were suboptimal but may provide clues for subsequent VTE screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961164PMC
http://dx.doi.org/10.2147/IJGM.S354288DOI Listing

Publication Analysis

Top Keywords

risk factors
20
prediction models
12
non-oncological urological
12
urological inpatients
12
logistic regression
12
prediction model
12
vte
11
venous thromboembolism
8
vte non-oncological
8
1453 inpatients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!