Taste memory involves storing information through plasticity changes in the neural network of taste, including the insular cortex (IC) and ventral tegmental area (VTA), a critical provider of dopamine. Although a VTA-IC dopaminergic pathway has been demonstrated, its role to consolidate taste recognition memory remains poorly understood. We found that photostimulation of dopaminergic neurons in the VTA or VTA-IC dopaminergic terminals of TH-Cre mice improves the salience to consolidate a subthreshold novel taste stimulus regardless of its hedonic value, without altering their taste palatability. Importantly, the inhibition of the D1-like receptor into the IC impairs the salience to facilitate consolidation of an aversive taste recognition memory. Finally, our results showed that VTA photostimulation improves the salience to consolidate a conditioned taste aversion memory through the D1-like receptor into the IC. It is concluded that the dopamine activity from the VTA into IC is required to increase the salience enabling the consolidation of a taste recognition memory. Notably, the D1-like receptor activity into the IC is required to consolidate both innate and learned aversive taste memories but not appetitive taste memory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962201PMC
http://dx.doi.org/10.3389/fncel.2022.823220DOI Listing

Publication Analysis

Top Keywords

taste recognition
16
recognition memory
16
salience consolidate
12
aversive taste
12
d1-like receptor
12
taste
11
ventral tegmental
8
memory d1-like
8
taste memory
8
vta-ic dopaminergic
8

Similar Publications

Cyclization: A potential effective modification strategy for umami peptides.

Food Chem

December 2024

Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China. Electronic address:

Cyclization enhances various properties of peptides and has been widely used in life sciences, but it has not been explored in taste peptides. Our study found that cyclization of the N/C termini of the peptides (head-to-tail) via amide bond is a potentially effective modification strategy for umami peptides to improve their properties. This is the first report on umami cyclic peptides.

View Article and Find Full Text PDF

Multiancestry Genome-Wide Association Study of Early Childhood Caries.

J Dent Res

December 2024

Department of Pediatric Dentistry and Dental Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.

Early childhood caries (ECC) is the most common noncommunicable childhood disease-an important health problem with known environmental and social/behavioral influences lacking consensus genetic risk loci. To address this knowledge gap, we conducted a genome-wide association study of ECC in a multiancestry population of U.S.

View Article and Find Full Text PDF

Recent studies have indicated that the activation of bitter taste receptors (T2R) expressed in gastrointestinal secretory cells has a regulatory effect on the secretion of gastrointestinal hormones. Polyphenols are known to be ingested at a daily intake of 5 g or more and commonly have a bitter taste. Consequently, the interaction between the bitter taste receptor T2R46 and 490 polyphenols was investigated using simulation techniques.

View Article and Find Full Text PDF

Bitter food, because of its unique taste, is not popular with the public, and is even considered to be difficult to swallow. By binding to specific sites of bitter receptors (26 hTAS2Rs), bitter compounds activate the downstream signaling pathways mediated by G protein, which convert chemical signals into electrical signals that are ultimately transmitted to the brain to produce the bitter perception. The intensity of bitterness is mainly determined by the hydrophobic recognition region of bitter receptors.

View Article and Find Full Text PDF

Poly(p-Phenyleneethynylene)s-Based Sensor Array for Diagnosis of Clinical Diseases.

ChemMedChem

November 2024

State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China.

Inspired by the mammalian taste and olfactory systems, array-based pattern recognition technology has demonstrated significant potential in discerning subtle differences between highly similar compounds and complex mixtures, owing to their unique parallel detection mechanism based on cross-reactive signals. While optical sensor array has been extensively employed in the field of chemical sensing, they encounter significant challenges in non-specific recognition of multiple analytes at low concentrations, particularly in rife environments with complex interferences. Poly(p-phenylene ethynylene)s (PPEs) offer substantial advantages in detecting multi-analytes at low concentrations, owing to its distinctive optical properties, including the "molecular wire" effect, fluorescence super-amplification and super-quenching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!