In the area of coating development, it is extremely difficult to find a substitute for bisphenol A diglycidyl ether (DGEBA), the classical petroleum-based raw material used for the formulation of epoxy thermosets. This epoxy resin offers fast curing reaction with several hardeners and the best thermal and chemical resistance properties for applications in coatings and adhesive technologies. In this work, a new biobased epoxy, derived from poly(limonene carbonate) oxide (PLCO), was combined with polyetheramine and polyamineamide curing agents, offering a spectrum of thermal and mechanical properties, superior to DGEBA-based thermosets. The best formulation was found to be a combination of PLCO and a commercial curing agent (Jeffamine) in a stoichiometric 1:1 ratio. Although PLCO is a solid due to its high molecular weight, it was possible to create a two-component partially biobased epoxy paint without the need of volatile organic compounds (i.e., solvent-free formulation), intended for use in coating technology to partially replace DGEBA-based thermosets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938888 | PMC |
http://dx.doi.org/10.1021/acssuschemeng.1c07665 | DOI Listing |
Polymers (Basel)
January 2025
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.
This paper experimentally investigates the impact response of composite laminates made with conventional and bio-based epoxy resin. Drop tower impact tests were conducted at varying energy levels, including repeated low-energy impacts, to evaluate perforation resistance. The laminates' residual strength and damage tolerance were assessed using the Damage Index (DI) and by analysing the resonance frequency variations through the Impulse Excitation Technique (IET).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy.
This paper deals with the design of novel epoxy adhesives by incorporating thermoplastic polymers such as polyetherimide (PEI) and poly(ε-caprolactone) (PCL) into a bio-based and recyclable epoxy resin, known as Polar Bear. The adhesives were characterized by their mechanical (quasi-static and dynamic) and rheological properties, thermal stability, and adhesion properties in single-lap joints tested at three different temperatures (i.e.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Textile Science and Engineering, Zhejiang Sci-Tech University, Zhejiang, China. Electronic address:
The development of degradable food packaging materials with hydrophobic and oleophobic properties is a key to focus in reducing plastic waste. Chitosan is gaining interest for its versatility and easy modification, but its application is limited by the poor hydrophobicity and oleophobicity. Using polymers to modify chitosan films has been shown as a promising approach to solve this issue.
View Article and Find Full Text PDFChemSusChem
January 2025
Flemish Institute for Technological Research (VITO N.V.), Boeretang 200, 2400, Mol, Belgium.
The pursuit of carbon circularity in the fabrication of new materials has driven the increased use of recycled and biobased resources, a practice that has become more prevalent in recent years. In epoxy resin systems, alternatives to the use of fossil-based bisphenols have been proposed such as via the production of recycled bisphenol A (r-BPA) or by substitution with lignin derivatives, both of which are recovered from previous processes, promoting circularity. For this study, r-BPA was obtained via the chemical recycling of plastic blends from end-of-life (eol) televisions (TV).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Materials, Environment, Sapienza University of Rome, 00184 Rome, Italy.
Cleavable bio-based epoxy resin systems are emerging, eco-friendly, and promising alternatives to the common thermoset ones, providing quite comparable thermo-mechanical properties while enabling a circular and green end-of-life scenario of the composite materials. In addition to being designed to incorporate a bio-based resin greener than the conventional fully fossil-based epoxies, these formulations involve cleaving hardeners that enable, under mild thermo-chemical conditions, the total recycling of the composite material through the recovery of the fiber and matrix as a thermoplastic. This research addressed the characterization, processability, and recyclability of a new commercial cleavable bio-resin formulation (designed by the R-Concept company) that can be used in the fabrication of fully recyclable polymer composites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!