Background: Otitis media (OM) is one of the most common infections in young children, arising from bacterial and/or viral infection of the middle ear. Globally, and non-typeable (NTHi) are the predominant bacterial otopathogens. Importantly, common upper respiratory viruses are increasingly recognized contributors to the polymicrobial pathogenesis of OM. This study aimed to identify predominant bacteria and viruses in the nasopharynx, adenoids and middle ears of peri-urban/urban South-East Queensland Australian children, with and without clinical history of chronic otitis media with effusion (COME) and/or recurrent acute otitis media (RAOM).
Methods: Sixty children, 43 diagnosed with OM and 17 controls with no clinical history of OM from peri-urban/urban South-East Queensland community were recruited to the study. Respiratory tract bacterial and viral presence were examined within nasopharyngeal swabs (NPS), middle ear effusions (MEE) and adenoids, using real-time polymerase chain reaction (RT-PCR) and bacterial culture.
Results: At least one otopathogen present was observed in all adenoid samples, 86.1% and 82.4% of NPS for children with and without OM, respectively, and 47.1% of the MEE from the children with OM. NTHi was the most commonly detected bacteria in both the OM and control cohorts within the adenoids (90.0% vs 93.8%), nasopharynx (67.4% vs 58.8%) respectively, and in the MEE (OM cohort 25.9%). Viruses were detected in all adenoid samples, 67.4% vs 47.1% of the NPS from the OM and control cohorts, respectively, and 37% of the MEE. Rhinovirus was the predominant virus identified in the adenoids (85.0% vs 68.8%) and nasopharynx (37.2% vs 41.2%) from the OM and control cohorts, respectively, and the MEE (19.8%).
Conclusions: NTHi and rhinovirus are predominant otopathogens within the upper respiratory tract of children with and without OM from peri-urban and urban South-East Queensland, Australia. The presence of bacterial otopathogens within the middle ear is more predictive of concurrent URT infection than was observed for viruses, and the high otopathogen carriage within adenoid tissues confirms the complex polymicrobial environment in children, regardless of OM history.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963760 | PMC |
http://dx.doi.org/10.3389/fcimb.2022.775535 | DOI Listing |
Int J Mol Sci
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.
Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
belongs to the unconventional myosin superfamily, and the myosin IIIa protein localizes on the tip of the stereocilia of vestibular and cochlear hair cells. Deficiencies in have been reported to cause the deformation of hair cells into abnormally long stereocilia with an increase in spacing. is a rare causative gene of autosomal recessive sensorineural hearing loss (DFNB30), with only 13 cases reported to date.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
Background/objectives: The gene is responsible for autosomal recessive non-syndromic sensorineural hearing loss and is assigned as DFNB18B. To date, 44 causative variants have been reported to cause non-syndromic hearing loss. However, the detailed clinical features for -associated hearing loss remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
Radiotherapy (RTx) is a highly effective treatment for head and neck cancer that can cause concurrent damage to surrounding healthy tissues. In cases of nasopharyngeal carcinoma (NPC), the auditory apparatus is inevitably exposed to radiation fields and sustains considerable damage, resulting in dysfunction. To date, little research has been conducted on the changes induced by RTx in the middle ear and the underlying mechanisms involved.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
Objective: What we hear may influence postural control, particularly in people with vestibular hypofunction. Would hearing a moving subway destabilize people similarly to seeing the train move? We investigated how people with unilateral vestibular hypofunction and healthy controls incorporated broadband and real-recorded sounds with visual load for balance in an immersive contextual scene.
Design: Participants stood on foam placed on a force-platform, wore the HTC Vive headset, and observed an immersive subway environment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!