Computational Repurposing of Drugs and Natural Products Against SARS-CoV-2 Main Protease (M) as Potential COVID-19 Therapies.

Front Mol Biosci

Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.

Published: March 2022

We urgently need to identify drugs to treat patients suffering from COVID-19 infection. Drugs rarely act at single molecular targets. Off-target effects are responsible for undesirable side effects and beneficial synergy between targets for specific illnesses. They have provided blockbuster drugs, e.g., Viagra for erectile dysfunction and Minoxidil for male pattern baldness. Existing drugs, those in clinical trials, and approved natural products constitute a rich resource of therapeutic agents that can be quickly repurposed, as they have already been assessed for safety in man. A key question is how to screen such compounds rapidly and efficiently for activity against new pandemic pathogens such as SARS-CoV-2. Here, we show how a fast and robust computational process can be used to screen large libraries of drugs and natural compounds to identify those that may inhibit the main protease of SARS-CoV-2. We show that the shortlist of 84 candidates with the strongest predicted binding affinities is highly enriched (≥25%) in compounds validated or to have activity in SARS-CoV-2. The top candidates also include drugs and natural products not previously identified as having COVID-19 activity, thereby providing leads for experimental validation. This predictive screening pipeline will be valuable for repurposing existing drugs and discovering new drug candidates against other medically important pathogens relevant to future pandemics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964187PMC
http://dx.doi.org/10.3389/fmolb.2022.781039DOI Listing

Publication Analysis

Top Keywords

drugs natural
12
natural products
12
drugs
8
main protease
8
existing drugs
8
computational repurposing
4
repurposing drugs
4
natural
4
sars-cov-2
4
products sars-cov-2
4

Similar Publications

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Comparative Efficacy and Safety of Oral Semaglutide in Asians and Non-Asians Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis.

Diabetes Ther

January 2025

First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical, University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China.

Introduction: More than half of diabetes patients are Asians, and their tolerance to antidiabetic drugs may differ from that of non-Asians. Oral semaglutide has recently gained attention for its advantages in glycemic and body weight control. However, its effects across different ethnic groups remain unknown.

View Article and Find Full Text PDF

Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acyl silanes with amines, simply by turning a light on or off.

View Article and Find Full Text PDF

In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.

View Article and Find Full Text PDF

LC-MS/MS Analyzing Praziquantel and 4-Hydroxypraziquantel Enantiomers in Black Goat Plasma and Mechanism of Stereoselective Pharmacokinetics.

Biomed Chromatogr

February 2025

Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.

Praziquantel (PZQ) is the most effective treatment for schistosomiasis, commonly administered as a racemic mixture of the two enantiomers. Despite many reports on the pharmacokinetics of PZQ, the stereoselective pharmacokinetics of PZQ and its major metabolite 4-hydroxypraziquantel (4-OH-PZQ) remain poorly understood in goats. In this study, the chiral LC-MS/MS method was further optimized for separating and quantifying PZQ, trans-4-OH-PZQ, and cis-4-OH-PZQ and their enantiomers and then applied for the molecular pharmacokinetics of three analytes in black goat plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!