Accumulation of assimilates in source leaves of magnesium-deficient plants is a well-known feature. We had wished to determine whether metabolite concentrations in sink leaves and roots are affected by magnesium nutrition. Eight-week-old spinach plants were supplied either with a complete nutrient solution (control plants) or with one lacking Mg (deficient plants) for 12 days. Shoot and root fresh weights and dry weights were lower in deficient than in control plants. Mg concentrations in deficient plants were 11% of controls in source leaves, 12% in sink leaves and 26% in roots, respectively. As compared with controls, increases were found in starch and amino acids in source leaves and in sucrose, hexoses, starch and amino acids in sink leaves, whereas they were only slightly enhanced in roots. In phloem sap of magnesium-deficient and control plants no differences in sucrose and amino acid concentrations were found. To prove that sink leaves were the importing organs they were shaded, which did not alter the response to magnesium deficiency as compared with that without shading. Since in the shaded sink leaves the photosynthetic production of metabolites could be excluded, those carbohydrates and amino acids that accumulated in the sink leaves of the deficient plants must have been imported from the source leaves. It is concluded that in magnesium-deficient spinach plants the growth of sink leaves and roots was not limited by carbohydrate or amino acid supply. It is proposed that the accumulation of assimilates in the source leaves of Mg-deficient plants results from a lack of utilization of assimilates in the sink leaves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1399-3054.1998.1020103.x | DOI Listing |
Plant Cell Environ
January 2025
College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China.
A key feature of stress responses [closely relative to the phytohormone abscisic acid (ABA)] and associated acclimation in plants is the dynamic adjustments and related optimisation of carbohydrate content between sink and source organs. The production of stomata, which consist of a pore between two adjacent guard cells, are central to plant adaptation to changing environment conditions. In this context, ABA is a core modulator of environmentally determined stomatal development.
View Article and Find Full Text PDFBiochem J
January 2025
Universiteit Gent, Ghent, Belgium.
Thiamin, an essential micronutrient, is a cofactor for enzymes involved in the central carbon metabolism and amino acids pathways. Despite efforts to enhance thiamin content in rice by incorporating thiamin biosynthetic genes, increasing thiamin content in endosperm remains challenging, possibly due to a lack of thiamin stability and/or a local sink. The introduction of storage proteins has been successful in biofortification strategies and similar efforts targeting thiamin led to a 3-4-fold increase in white rice.
View Article and Find Full Text PDFPlant Physiol
January 2025
Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
Proper regulation of the source-sink relationship is an effective way to increase crop yield. Gibberellin (GA) is an important regulator of plant growth and development, and physiological evidence has demonstrated that GA can promote source-sink sucrose partitioning. However, the underlying molecular mechanism remains unclear.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China.
Int J Biol Macromol
January 2025
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China. Electronic address:
In higher plants, sugars are the primary products of photosynthesis, where CO is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!