Tre character of K+ uptake in anaerobically grown S. typhimurium LT-2 is studied. In the alkaline media with glucose and moderate K+ activity these bacteria uptake K+ in two steps, the first of which has a high rate of K+ uptake, Km 2.1 mM and Vmax 0.44 mM/g. min and is sensitive to the medium osmolarity. Bacteria transfer from the media with high osmolarity to that with low one leads to a decrease of K+ uptake at the first step. The second increase of the medium osmolarity turns on the rapid K+ uptake only at alkaline pH. K+ uptake at the first step is inhibited by DCC and protonophores. In the absence of phosphate in the medium arsenate blocks K+ uptake at the first step, and when phosphate is available arsenate decreases K+ uptake. Valinomycin decreases the rate of K+ uptake. K+ uptake at the first step in S. typhimurium proceeds via Trk-like system which requires for K+ uptake both ATP and delta mu H+.

Download full-text PDF

Source

Publication Analysis

Top Keywords

uptake step
16
uptake
12
character uptake
8
uptake anaerobically
8
anaerobically grown
8
rate uptake
8
medium osmolarity
8
[the character
4
grown typhimurium]
4
typhimurium] tre
4

Similar Publications

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

Background: The disease burden of COVID-19 infection, morbidity, and mortality was unevenly distributed across different population subgroups. A one-size-fits-all approach may not reach all groups. Identifying barriers and drivers that influence behaviour towards COVID-19 public health and social measures (PHSM) is an important step when designing tailored interventions.

View Article and Find Full Text PDF

Purpose: Cigarette smoking (CS) induces systemic changes that impair cardiorespiratory and muscular function both at rest and during exercise. Although these abnormalities are reported in sedentary, middle-aged smokers (SM) with pulmonary disease, few and controversial studies focused on young, physically active SM at the early stage of smoking history. This study aimed at assessing the impact CS on cardiorespiratory and metabolic response during an incremental test and the subsequent recovery in young, physically active SM without known lung or cardiovascular disease.

View Article and Find Full Text PDF

Objectives: Chronic pain treatment engagement is dominated by pharmaceutical methods, while previous research has assessed barriers to uptake of non-pharmaceutical treatments, there has not been research one step earlier in the treatment development pipeline; assessing barriers to take part in research that develops non-pharmaceutical chronic pain treatment methods.

Design: A two-phase approach was used to assess barriers and facilitators to research participation for people living with chronic pain. Online focus groups were run in phase 1, generating qualitative data, while phase 2 used the themes identified within phase 1 to assess agreement and disagreement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!