A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bisulfite activated permanganate for oxidative water decontamination. | LitMetric

Bisulfite activated permanganate for oxidative water decontamination.

Water Res

Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China. Electronic address:

Published: June 2022

Recently, bisulfite-activated permanganate (MnO; Mn(VII)) process has attracted considerable attention as a novel class of advanced oxidation technology for destruction of organic contaminants in water. However, disputes over the underlying activation mechanism as well as reactive species generated in the Mn(VII)/bisulfite system remain for a long period due to the fairly complex chemistry involved in this system. This article aims to present a critical review on scientific development of the Mn(VII)/bisulfite system, with particular focus on the generation and contribution of various reactive intermediates. Both reactive manganese species (RMnS) (i.e., soluble Mn(III), Mn(V), and Mn(VI)) and radical species (primarily SO) are identified as the oxidizing components responsible for enhanced degradation of organic contaminants by the Mn(VII)/bisulfite system. Bisulfite plays a dual role of being an activating agent for reactive intermediates generation and acting as a complexing agent to stabilize RMnS. Solution chemistry (e.g., the [Mn(VII)]/[bisulfite] molar ratio, solution pH, the type of contaminants, ligands, and water matrix components) greatly impacts the generation and consumption of RMnS and radicals, thus influencing the degradation kinetics and pathways of organics. Particularly, dissolved oxygen (DO) is a vital factor for driving the oxidation of organics since the absence of DO can block the generation of SO and meantime causes the consumption of RMnS by excess SO as a strong reductant. Interestingly, ferrate (FeO, Fe(VI)) and hexavalent chromium (CrO/HCrO, Cr(VI)) that are high-valent metal oxyanions analogous to Mn(VII) can be activated by bisulfite via a similar pathway (i.e. both high-valent metal-oxo intermediates and reactive radicals are involved). Furthermore, key knowledge gaps are identified and future research needs are proposed to address the potential challenges encountered in practical application of the Mn(VII)/bisulfite oxidation technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118331DOI Listing

Publication Analysis

Top Keywords

mnvii/bisulfite system
12
oxidation technology
8
organic contaminants
8
reactive intermediates
8
intermediates reactive
8
generation consumption
8
consumption rmns
8
reactive
5
bisulfite activated
4
activated permanganate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!