Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oxidation of aqueous arsenite (As(III)) by As(III)-oxidizing bacteria is known to attenuate the mobilization and toxicity of arsenic, and is regarded as potential method for As(III)-pollution remediation. However, during the interactions between As(III)-oxidizing bacteria and different As(III)-adsorbed soil Fe-minerals, the oxidation and partitioning of solid-phase As(III), as well as the controlling mechanisms, remain unclear. In this study, we therefore incubated three As(III)-adsorbed Fe-minerals with a typical As(III)-oxidizing bacteria (Pseudomonas sp. HN-1) at different pH conditions. After microbial oxidation, the percentage of arsenate (As(V)) was significantly higher at pH 7 (15-94%) and 9 (12-89%) than at pH 4 (6-50%) in all Fe-minerals. Incubation of As(III)-oxidizing bacteria promoted As-immobilization under acidic-conditions but As-mobilization under alkaline-conditions. Arsenic-X-ray adsorption spectroscopy results showed that solid-phase As(V) fraction in goethite, hematite and magnetite was 27-64%, 5-12% and 50-91%, respectively. Compared with the corner-sharing As(III)-adsorption complexes formed on magnetite, the edge-sharing complexes on hematite were significantly more stable towards microbial-oxidation. Additionally, the strong adhesion between strain HN-1 and hematite probably limit bacterial-activity and mobility, thereby inhibiting microbial As(III)-oxidation. Our findings elucidate the controlling mechanisms of microbial As(III)-oxidation in different As(III)-adsorbed Fe-minerals and demonstrate strain HN-1 is an excellent candidate for As(III)-remediation in soils containing goethite and magnetite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128778 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!