Objective: The present study aimed to conduct a systematic review of the literature, to evaluate, in vitro, the effectiveness of the technique of photodynamic therapy against microorganisms associated with periodontal disease.
Design: This systematic review was carried out in accordance with the items on the PRISMA checklist and Cochrane guidelines. Only in vitro studies that evaluated the effect of the technique of antimicrobial photodynamic therapy on periodontopathogenic microorganisms were included.
Results: A total of 32 articles published between 2000 and 2021 were included for qualitative analysis. For microorganisms in suspension, 25 studies (78.12%) showed a reduction greater than or equal to 3 logs CFU/mL of species associated with periodontal disease. In biofilms, three studies (42.7%) showed a reduction greater than or equal to 3 logs CFU/mL.
Conclusions: The results showed that the technique of photodynamic therapy may be a promising alternative to conventional antimicrobial approaches for reducing bacteria closely associated with periodontal disease. Some parameters (pre-irradiation time, type of photosensitizer, standardization of light parameters) need to be better established before conducting clinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2022.105425 | DOI Listing |
Nat Commun
January 2025
Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hunan University, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistr, 410082, Changsha, CHINA.
Immunotherapy is a promising cancer treatment, but its application is hindered by tumors' low immunogenicity and the difficulty of immune cell infiltration. Here, to address above issues and achieve targeted tumor treatment, we designed the first activated small molecule photosensitizer immune-prodrug HDIM based on pyroptosis, and proposed a self-amplified immune therapy strategy (SITS) for enhanced tumor therapy. HDIMcan be specifically activated by the tumor hypoxiaand then simultaneously initiate immuno-therapy and photodynamic therapy (PDT)-induced pyroptosis with NIR laser irradiation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China. Electronic address:
Bacterial infections impede skin wound healing, and antibacterial hydrogels have garnered significant attention in the field of wound care due to their combined therapeutic effects. In this study, an intelligent, responsive AC-Gel@Cur-Au hydrogel was developed using temperature-sensitive agarose and pH-responsive chitosan as the structural framework, infused with Gel@Cur and AuNR. The AC-Gel@Cur-Au hydrogels demonstrated excellent mechanical properties, swelling capacity, tissue adhesion, and biodegradability.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China. Electronic address:
Oral squamous cell carcinoma (OSCC) is the most common subtype of head and neck malignancies, characterized by a five-year survival rate that remains persistently below 50%, indicative of limited progress in therapeutic interventions. There is an urgent imperative to develop innovative therapeutic strategies, warranting the investigation of advanced treatment modalities. Nanocarriers offer a promising avenue by significantly enhancing drug properties and pharmacokinetics.
View Article and Find Full Text PDFBiomaterials
January 2025
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China. Electronic address:
Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment due to its precise spatiotemporal selectivity and non-invasive nature. However, several challenges, including the inability of photosensitizers to discriminate between tumor and healthy tissues, as well as the limited tissue penetration depth of light sources, impede its broader application. To surmount these impediments, our research introduces a two-photon photosensitizer (TPSS) that specifically targets tumor overexpressing carbonic anhydrase IX (CA IX), thereby exhibiting exceptional specificity for tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!