Enhancement of evaluating flatfoot on a weight-bearing lateral radiograph of the foot with U-Net based semantic segmentation on the long axis of tarsal and metatarsal bones in an active learning manner.

Comput Biol Med

Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. Electronic address:

Published: June 2022

Robust labeling for semantic segmentation in radiographs is labor-intensive. No study has evaluated flatfoot-related deformities using semantic segmentation with U-Net on weight-bearing lateral radiographs. Here, we evaluated the robustness, accuracy enhancement, and efficiency of automated measurements for flatfoot-related angles using semantic segmentation in an active learning manner. A total of 300 consecutive weight-bearing lateral radiographs of the foot were acquired. The first 100 radiographs were used as the test set, and the following 200 radiographs were used as the training and validation sets, respectively. An expert orthopedic surgeon manually labeled ground truths. U-Net was used for model training. The Dice similarity coefficient (DSC) and Hausdorff distance (HD) were used to evaluate the segmentation results. In addition, angle measurement errors with a minimum moment of inertia (MMI) and ellipsoidal fitting (EF) based on the segmentation results were compared between active learning and learning with a pooled dataset. The mean values of DSC, HD, MMI, and EF of the average of all bones were 0.967, 1.274 mm, 0.792°, and 1.147° in active learning, and 0.964, 1.292 mm, 0.828°, and 1.186° in learning with a pooled dataset, respectively. The mean DSC and HD were significantly better in active learning than in learning with a pooled dataset. Labeling of all bones required 0.82 min in active learning and 0.88 min in learning with a pooled dataset. The accuracy and angle errors generally converged in both learning. However, the accuracies based on DSC and HD were significantly better in active learning. Moreover, active learning took less time for labeling, suggesting that active learning could be an accurate and efficient learning strategy for developing flatfoot classifiers based on semantic segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105400DOI Listing

Publication Analysis

Top Keywords

active learning
36
semantic segmentation
20
learning pooled
16
pooled dataset
16
learning
15
weight-bearing lateral
12
active
9
based semantic
8
learning manner
8
lateral radiographs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!