The Chemical Factory in Marktredwitz (CFM) is known as the oldest chemical factory in Germany (1778-1985), and from the beginning of the 20 century focused primarily on the production of mercury (Hg) compounds. Due to extensive pollution, together with employee health issues, the CFM was shut in 1985 by a government order and remediation works proceeded from 1986 to 1993. In this study, tree ring archives of European Larch (Larix decidua Mill.) were used to reconstruct changes of air Hg levels near the CFM. Mercury concentrations in larch boles decreased from 80.6 μg kg at a distance of 0.34 km-3.4 μg kg at a distance of 16 km. The temporal trend of atmospheric Hg emissions from the CFM reconstructed from the tree ring archives showed two main peaks. The first was in the 1920s, with a maximum tree ring Hg concentration 249.1 ± 43.9 μg kg coinciding with when the factory had a worldwide monopoly on the production of Hg-based seed dressing fungicide. The second peak in the 1970s, with a maximum tree ring Hg concentration of 116.4 ± 6.3 μg kg, was associated with a peak in the general usage and production of Hg chemicals and goods. We used the tree ring record to reconstruct past atmospheric Hg levels using a simple model of Hg distribution between the larch tree rings and atmosphere. The precision of the tree ring model was checked against the results of air Hg measurements during the CFM remediation 30 years ago. According to the tree ring archives, the highest air Hg concentrations in the 1920s in Marktredwitz were over 70 ng m. Current air Hg levels of 1.18 ng m, assessed in the city of Marktredwitz, indicate the lowest air Hg in the past 150 years, underscoring the effective remediation of the CFM premises 30 years ago.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.119215DOI Listing

Publication Analysis

Top Keywords

tree ring
32
chemical factory
12
ring archives
12
tree
9
atmospheric levels
8
oldest chemical
8
ring
8
air levels
8
maximum tree
8
ring concentration
8

Similar Publications

Effect of Selenium, Copper and Manganese Nanocomposites in Arabinogalactan Matrix on Potato Colonization by Phytopathogens and .

Plants (Basel)

December 2024

Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, 37077 Göttingen, Germany.

The effect of chemically synthesized nanocomposites (NCs) of selenium (Se/AG NC), copper oxide (Cu/AG NC) and manganese hydroxide (Mn/AG NC), based on the natural polymer arabinogalactan (AG), on the processes of growth, development and colonization of potato plants in vitro was studied upon infection with the causative agent of potato blackleg-the Gram-negative bacterium -and the causative agent of ring rot-the Gram-positive bacterium (). It was shown that the infection of potatoes with reduced the root formation of plants and the concentration of pigments in leaf tissues. The treatment of plants with Cu/AG NC before infection with stimulated leaf formation and increased the concentration of pigments in them.

View Article and Find Full Text PDF

Superellipse Equation Describing the Geometries of Tree Rings.

Plants (Basel)

December 2024

Co-Innovation Center of Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.

Our previous study using 41 tree rings of one Mill. disc indicated that the superellipse equation can accurately fit its tree-ring shape. This study further used the superellipse equation (xan+yβn=1 ) to model the geometries of 1090 tree rings of discs collected from five sites in Denmark.

View Article and Find Full Text PDF

Tracing ancient solar cycles with tree rings and radiocarbon in the first millennium BCE.

Nat Commun

January 2025

Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern Weg 5 HPK, 8093, Zurich, Switzerland.

The Sun drives Earth's energy systems, influencing weather, ocean currents, and agricultural productivity. Understanding solar variability is critical, but direct observations are limited to 400 years of sunspot records. To extend this timeline, cosmic ray-produced radionuclides like C in tree-rings provide invaluable insights.

View Article and Find Full Text PDF

Artificial simulated communication networks inspired by molecular communication in organisms use biological and chemical molecules as information carriers to realize information transmission. However, the design of programmable, multiplexed and general simulation models remains challenging. Here, we develop a DNA nanostructure recognition-based artificial molecular communication network (DR-AMCN), in which rectangular DNA origami nanostructures serve as nodes and their recognition as edges.

View Article and Find Full Text PDF

Auxin promotes chloroplast division by increasing the expression of chloroplast division genes.

Plant Cell Rep

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!