Deoxyguanosine kinase (dGK) is reported responsible for the phosphorylation of deoxyadenosine (dA) and deoxyguanosine (dG) in the mitochondrial purine salvage pathway. Antiviral nucleoside analogs known as nucleoside reverse transcriptase inhibitors (NRTIs) must be phosphorylated by host enzymes for the analog to become active. We address the possibility that NRTI purine analogs may be competitive inhibitors of dGK. From a group of such analogs, we demonstrate that entecavir (ETV) competitively inhibited the phosphorylation of dG and dA in rat mitochondria. Mitochondria from the brain, heart, kidney, and liver showed a marked preference for phosphorylation of dG over dA (10-30-fold) and ETV over dA (2.5-4-fold). We found that ETV inhibited the phosphorylation of dG with an IC of 15.3 ± 2.2 μM and that ETV and dG were both potent inhibitors of dA phosphorylation with IC of 0.034 ± 0.007 and 0.028 ± 0.006 μM, respectively. In addition, the phosphorylation of dG and ETV followed Michaelis-Menten kinetics and each competitively inhibited the phosphorylation of the other. We observed that the kinetics of dA phosphorylation were strikingly different from those of dG phosphorylation, with an exponentially lower affinity for dGK and no effect of dA on dG or ETV phosphorylation. Finally, in an isolated heart perfusion model, we demonstrated that dG, dA, and ETV were phosphorylated and dG phosphorylation was inhibited by ETV. Taken together, these data demonstrate that dGK is inhibited by ETV and that the primary role of dGK is in the phosphorylation of dG rather than dA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097457PMC
http://dx.doi.org/10.1016/j.jbc.2022.101876DOI Listing

Publication Analysis

Top Keywords

phosphorylation
13
inhibited phosphorylation
12
etv
9
competitively inhibited
8
inhibited etv
8
dgk
5
inhibited
5
entecavir competitively
4
competitively inhibits
4
inhibits deoxyguanosine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!