Anopheles gambiae and Anopheles coluzzii are closely related species that are predominant vectors of malaria in Africa. Recently, A. gambiae form M was renamed A. coluzzii and we now conclude on the basis of a diagnostic PCR-restriction fragment length polymorphism assay that Ag55 cells were derived from A. coluzzii. We established an Ag55 cell transcriptome, and KEGG pathway analysis showed that Ag55 cells are enriched in phagosome pathway transcripts. The Ag55 transcriptome has an abundance of specific transcripts characteristic of mosquito hemocytes. Functional E. coli bioparticle uptake experiments visualized by fluorescence microscopy and confocal microscopy and quantified by flow cytometry establish the phagocytic competence of Ag55 cells. Results from this investigation of Ag55 cell properties will guide researchers in the use and engineering of the Ag55 cell line to better enable investigations of Plasmodium, other microbes, and insecticidal toxins.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-7917.13036DOI Listing

Publication Analysis

Top Keywords

ag55 cells
12
ag55 cell
12
anopheles gambiae
8
ag55
8
anopheles coluzzii
8
anopheles
4
gambiae strain
4
strain ag55
4
ag55 cultured
4
cells
4

Similar Publications

harboring Binary (BinA and BinB) toxins is highly toxic against and mosquito larvae. The Ag55 cell line is a suitable model for investigating the mode of Bin toxin action. Based on the low-levels of α-glycosidase Agm3 mRNA in Ag55 cells and the absence of detectable Agm3 proteins, we hypothesized that a scavenger receptor could be mediating Bin cytotoxicity.

View Article and Find Full Text PDF

Background: Anopheles cell lines are used in a variety of ways to better understand the major vectors of malaria in sub-Saharan Africa. Despite this, commonly used cell lines are not well characterized, and no tools are available for cell line identification and authentication.

Methods: Utilizing whole genome sequencing, genomes of 4a-3A and 4a-3B 'hemocyte-like' cell lines were characterized for insertions and deletions (indels) and SNP variation.

View Article and Find Full Text PDF

Anopheles gambiae and Anopheles coluzzii are closely related species that are predominant vectors of malaria in Africa. Recently, A. gambiae form M was renamed A.

View Article and Find Full Text PDF

Bacterial insecticidal proteins, such as the Bin toxin from Lysinibacillus sphaericus, could be used more extensively to control insecticide resistant mosquitoes. This study was aimed at identification of mosquito cell proteins binding Bin toxin. Results showed that purified toxin was toxic to Anopheles gambiae larvae and Ag55 cultured cells.

View Article and Find Full Text PDF

Anopheles gambiae Ag55 cell line as a model for Lysinibacillus sphaericus Bin toxin action.

J Invertebr Pathol

November 2015

Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-2603, United States. Electronic address:

Binary toxin (Bin) produced by Lysinibacillus sphaericus is toxic to Culex and Anopheles mosquito larvae. It has been used world-wide for control of mosquitoes that vector disease. The Bin toxin interacts with the glucosidase receptor, Cpm1, in Culex and its orthologue, Agm3, in Anopheles mosquitoes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!