With this work we introduce a novel memristor in a lateral geometry whose resistive switching behaviour unifies the capabilities of bipolar switching with decelerated diffusive switching showing a biologically plausible short-term memory. A new fabrication route is presented for achieving lateral nano-scaled distances by depositing a sparse network of carbon nanotubes (CNTs) via spin-coating of a custom-made CNT dispersion. Electrochemical metallization-type (ECM) resistive switching is obtained by implanting AgAu nanoparticles with a Haberland-type gas aggregation cluster source into the nanogaps between the CNTs and shows a hybrid behaviour of both diffusive and bipolar switching. The resistance state resets to a high resistive state (HRS) either if the voltage is removed with a retention time in the second- to sub-minute scale (diffusive) or by applying a reverse voltage (bipolar). Furthermore, the retention time is positively correlated to the duration of the Set voltage pulse. The potential for low-voltage operation makes this approach a promising candidate for short-term memory applications in neuromorphic circuits. In addition, the lateral fabrication approach opens the pathway towards integrating sensor-functionality and offers a general starting point for the scalable fabrication of nanoscaled devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970472PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264846PLOS

Publication Analysis

Top Keywords

short-term memory
12
bipolar switching
12
agau nanoparticles
8
novel memristor
8
diffusive bipolar
8
resistive switching
8
retention time
8
switching
6
sparse cnt
4
cnt networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!