Fluorescent imaging with voltage- or calcium-sensitive dyes, known as optical mapping, is one of the indispensable modern techniques to study cardiac or neural electrophysiology, unsurpassed by temporal and spatial resolution. High-speed CMOS cameras capable of optical registration of action potential propagation are in general very costly. We present a complete solution priced below US$1,000 (including camera and lens) at the moment of publication with an open-source image acquisition and processing software. We demonstrate that the iDS UI-3130CP rev.2 camera we used in this study is capable of 200x200 977 frames per second (FPS) action potential recordings from rodent hearts, with the signal-to-noise-ratio of a conditioned signal of 16 ± 10. A comparison with a specialized MiCAM Ultimate-L camera has shown that signal-to-noise ratio (SNR) while lower is sufficient for accurate measurements of AP waveform, conduction velocity (± 0.04 m/s) and action potential duration (± 7ms) in mouse and rat hearts. We used 4-aminopyridine to prolong the action potential duration in mouse heart, thus demonstrating that the proposed system is adequate for pharmacological studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970595PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259174PLOS

Publication Analysis

Top Keywords

action potential
16
optical mapping
8
potential duration
8
open-source low-cost
4
low-cost cardiac
4
cardiac optical
4
mapping system
4
system fluorescent
4
fluorescent imaging
4
imaging voltage-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!