It has been reported that transmembrane protein 100 (TMEM100) acts as a tumor regulator in several types of cancers. However, whether the expression of TMEM100 is associated with the development and prognosis of prostate cancer (PCa) remains elusive. Therefore, the present study aimed to uncover the role of GATA binding protein 5 (GATA5)-mediated activation of TMEM100 in the proliferation, migration and epithelial-to-mesenchymal transition (EMT) of PCa cells. The expressions of TMEM100 and GATA5 in PCa patients were analyzed by the GEPIA database. The binding site of GATA5 and TMEM100 promoter was predicted by the JASPAR database. Expressions of TMEM100 and GATA5 in PCa cells were detected by qRT-PCR and Western blot analysis. Cell Counting Kit 8 and colony formation assays were performed to measure cell proliferation. In addition, cell migration, invasion and the expression of EMT-associated proteins were evaluated using wound healing, transwell assay and Western blotting assays, respectively. The bioinformatics analysis revealed that TMEM100 was downregulated in PCa and was associated with overall survival of PCa. In addition, TMEM10 overexpression attenuated cell proliferation, migration, invasion and EMT in PCa cells. The interaction between TMEM100 and GATA5 was verified using dual luciferase reporter and chromatin immunoprecipitation assays. Furthermore, the results showed that GATA5 was downregulated and GATA5 silencing reversed the inhibitory effects of TMEM10 on PCa cells. Overall, the current study suggested that the GATA5-mediated transcriptional activation of TMEM100 could affect the behavior of PCa cells and was associated with poor prognosis in PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162018PMC
http://dx.doi.org/10.1080/21655979.2021.2018979DOI Listing

Publication Analysis

Top Keywords

pca cells
20
cell proliferation
12
proliferation migration
12
tmem100 gata5
12
pca
10
tmem100
9
gata binding
8
binding protein
8
transcriptional activation
8
transmembrane protein
8

Similar Publications

Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.

View Article and Find Full Text PDF

Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in promoting oncogenic transcriptional pathways, significantly contributing to the development and progression of cancer. Given the unique biostability of d-amino acid, the development of d-amino acid-containing peptides (DAACPs) is a promising strategy for cancer treatment. Currently, no DAACPs inhibitor targeting CDK9-cyclin T1 have been reported.

View Article and Find Full Text PDF

Objectives: In recent years, the incidence and mortality rates of prostate cancer (PCa) have still not been significantly reduced and the mechanisms of tumor onset and progression are still not fully understood. The pathogenic mechanisms and upstream regulation of UBE2S expression in prostate cancer have not been elucidated.

Methods: Here, we performed bioinformatic analysis of public databases to reveal the expression of UBE2S in PCa and its association with Gleason score, tumor staging, biochemical recurrence, and survival.

View Article and Find Full Text PDF

Background: Androgen receptor mutations, particularly T877A and W741L, promote prostate cancer (PCa). The main therapies against PCa use androgen receptor (AR) antagonists, including Bicalutamide; but these drugs lose their effectiveness over time. Chrysin is a flavonoid with several biological activities, including antitumoral properties; however, its potential as an antiandrogen must be explored.

View Article and Find Full Text PDF

Introduction/objective: Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!