A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating the Sources of Urban Air Pollution Using Low-Cost Air Quality Sensors at an Urban Atlanta Site. | LitMetric

AI Article Synopsis

  • Advances in low-cost sensors (LCS) have enhanced air quality monitoring by allowing more precise measurements of gases and particles in urban areas.
  • The study was conducted in Atlanta, GA, using LCS alongside research-grade instruments to analyze air pollutants and applied non-negative matrix factorization (NMF) to identify sources.
  • Findings showed that while both normalized and non-normalized LCS data can identify primary organic aerosols, normalization yields more diverse and comprehensive results, aiding in the understanding of complex pollution sources in moderately polluted areas.

Article Abstract

Advances in low-cost sensors (LCS) for monitoring air quality have opened new opportunities to characterize air quality in finer spatial and temporal resolutions. In this study, we deployed LCS that measure both gas (CO, NO, NO, and O) and particle concentrations and co-located research-grade instruments in Atlanta, GA, to investigate the capability of LCS in resolving air pollutant sources using non-negative matrix factorization (NMF) in a moderately polluted urban area. We provide a comparison of applying the NMF technique to both normalized and non-normalized data sets. We identify four factors with different temporal trends and properties for both normalized and non-normalized data sets. Both normalized and non-normalized LCS data sets can resolve primary organic aerosol (POA) factors identified from research-grade instruments. However, applying normalization provides factors with more diverse compositions and can resolve secondary organic aerosol (SOA). Results from this study demonstrate that LCS not only can be used to provide basic mass concentration information but also can be used for in-depth source apportionment studies even in an urban setting with complex pollution mixtures and relatively low aerosol loadings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c07005DOI Listing

Publication Analysis

Top Keywords

air quality
12
normalized non-normalized
12
data sets
12
research-grade instruments
8
non-normalized data
8
organic aerosol
8
air
5
lcs
5
investigating sources
4
urban
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!