Atomistic insight into the essential binding event of ACE2-derived peptides to the SARS-CoV-2 spike protein.

Biol Chem

Instituto de Química Biológica - Ciencias Exactas y Naturales - Conicet/Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 4° Piso, C1428EGA Ciudad de Buenos Aires, Argentina.

Published: April 2022

AI Article Synopsis

Article Abstract

The pathogenic agent of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters into human cells through the interaction between the receptor binding domain (RBD) of its spike glycoprotein and the angiotensin-converting enzyme 2 (ACE2) receptor. Efforts have been made towards finding antivirals that block this interaction, therefore preventing infection. Here, we determined the binding affinity of ACE2-derived peptides to the RBD of SARS-CoV-2 experimentally and performed MD simulations in order to understand key characteristics of their interaction. One of the peptides, p6, binds to the RBD of SARS-CoV-2 with nM affinity. Although the ACE2-derived peptides retain conformational flexibility when bound to SARS-CoV-2 RBD, we identified residues T27 and K353 as critical anchors mediating the interaction. New ACE2-derived peptides were developed based on the p6-RBD interface analysis and expecting the native conformation of the ACE2 to be maintained. Furthermore, we found a correlation between the helicity in trifluoroethanol and the binding affinity to RBD of the new peptides. Under the hypothesis that the conservation of peptide secondary structure is decisive to the binding affinity, we developed a cyclized version of p6 which had more helicity than p6 and approximately half of its value.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2021-0426DOI Listing

Publication Analysis

Top Keywords

ace2-derived peptides
16
binding affinity
12
affinity ace2-derived
8
rbd sars-cov-2
8
peptides
6
binding
5
sars-cov-2
5
rbd
5
atomistic insight
4
insight essential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!