Effect of yeast application on soil health and root metabolic status of corn seedlings under drought stress.

Arch Microbiol

Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.

Published: March 2022

The soil enzymes are the heart of the biochemical reactions that occur in the soil saving the soil nutrients needed for plant growth. Recently yeast's importance as plant growth-promoting microorganisms has great attention. This study evaluated the effect of yeast application on the soil enzymes activity and root metabolic status in corn plants under drought stress. A pot experiment was performed. The pots were divided into two groups; the first group was used for yeast application, the other group was used as a non-treated group. Each group was subdivided into two groups according to water treatment. One is 75%; the other is 45% of field capacity. Soil and root samples were taken at 5, 10, and 15 days after drought application for analysis. Soil samples were subjected to NPK and soil enzymes activity analysis. The root samples were subjected to determination NPK content, the osmolytes, lipid peroxidation, and antioxidant enzymes. The present results showed that yeast application upregulated the soil enzymes under drought which protected the NPK content in the soil. Therefore NPK in the treated group was significantly higher than that in the non-treated group. Also, yeast application improved the roots' osmotic status, the treated group showed significant osmolytes accumulation. Besides that the antioxidant enzymes activity status in the treated group was significantly higher than that in the non-treated group which significantly decreased the lipid peroxidation in the treated group. Yeast application can be an effective promising tool for improving the corn plant tolerance against drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-022-02843-8DOI Listing

Publication Analysis

Top Keywords

yeast application
24
soil enzymes
16
treated group
16
drought stress
12
enzymes activity
12
group yeast
12
non-treated group
12
soil
10
group
10
application soil
8

Similar Publications

Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast.

Appl Biochem Biotechnol

January 2025

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.

To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT).

View Article and Find Full Text PDF

In data-based modeling, correlations between explanatory variables often lead to the formation of distinct gene blocks. This study focuses on identifying influential gene blocks and key variables within these blocks, with a particular application in mind: genotype-phenotype mapping in Saccharomyces. To overcome the challenges of a limited sample size, we use partial least squares (PLS).

View Article and Find Full Text PDF

During the late laying period, the intestinal barrier of laying hens is susceptible to damage, resulting in enteric infections and even systemic inflammatory responses, posing a major challenge for the poultry industry. Therefore, it is crucial to investigate methods for addressing intestinal inflammation in late laying hens. In order to maximize the production potential of egg laying chickens, farmers usually use various feed additives to prevent damage to the intestinal barrier.

View Article and Find Full Text PDF
Article Synopsis
  • The yeast Pichia caribbica from the Meyerozyma guilliermondii species complex shows diverse abilities that help it adapt and survive in various environments.
  • The study explored how phytic acid (PA) can improve P. caribbica's effectiveness in protecting table grapes from decay and preserving their quality, with findings indicating that PA enhances yeast growth and biofilm formation.
  • Treatment with PA not only increased antioxidant enzyme activity in P. caribbica but also led to better control of grape decay during storage, demonstrating potential for sustainable postharvest solutions that consumers found appealing based on improved grape quality.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!