Metabolic syndrome (MetS) is diagnosed by the presence of high scores on three or more metabolic traits, including systolic and diastolic blood pressure (SBP, DBP), glucose and insulin levels, cholesterol and triglyceride (TG) levels, and central obesity. A diagnosis of MetS is associated with increased risk of cardiovascular disease and type 2 diabetes. The components of MetS have long been demonstrated to have substantial genetic components, but their genetic overlap is less well understood. The present paper takes a multi-prong approach to examining the extent of this genetic overlap. This includes the quantitative genetic and additive Bayesian network modeling of the large TwinsUK project and examination of the results of genome-wide association study (GWAS) of UK Biobank data through use of LD score regression and examination of the number of genes and pathways identified in the GWASes which overlap across MetS traits. Results demonstrate a modest genetic overlap, and the genetic correlations obtained from TwinsUK and UK Biobank are nearly identical. However, these correlations imply more genetic dissimilarity than similarity. Furthermore, examination of the extent of overlap in significant GWAS hits, both at the gene and pathway level, again demonstrates only modest but significant genetic overlap. This lends support to the idea that in clinical treatment of MetS, treating each of the components individually may be an important way to address MetS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ahg.12465 | DOI Listing |
Hemasphere
January 2025
Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104 Assistance Publique-Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital Cochin Paris France.
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.
View Article and Find Full Text PDFEXCLI J
November 2024
Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece.
Since the outbreak of the COVID-19 pandemic, there has been a global surge in patients presenting with prolonged or late-onset debilitating sequelae of SARS-CoV-2 infection, colloquially termed long COVID. This narrative review provides an updated synthesis of the latest evidence on the neurological manifestations of long COVID, discussing its clinical phenotypes, underlying pathophysiology, while also presenting the current state of diagnostic and therapeutic approaches. Approximately one-third of COVID-19 survivors experience prolonged neurological sequelae that persist for at least 12-months post-infection, adversely affecting patients' quality of life.
View Article and Find Full Text PDFJ Clin Res Pediatr Endocrinol
January 2025
Department of Pediatric Endocrinology, Umraniye Training and Research Hospital, Istanbul, Türkiye.
Objective: Heterozygous COL2A1 gene mutations are associated with type 2 collagenopathies, characterized by a wide, diverse, and overlapping clinical spectrum in related diseases. Our goal is to describe the clinical, radiological, and molecular findings of patients with COL2A1-related dysplasia and investigate the phenotype-genotype correlation. We also aim to emphasize the challenge of categorizing COL2A1-related diseases with similar clinical and radiological phenotypes.
View Article and Find Full Text PDFMol Autism
January 2025
Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
Background: Significant progress has been made in elucidating the genetic underpinnings of Autism Spectrum Disorder (ASD). However, there are still significant gaps in our understanding of the link between genomics, neurobiology and clinical phenotype in scientific discovery. New models are therefore needed to address these gaps.
View Article and Find Full Text PDFDev Biol
January 2025
Institute of Life Sciences and Health (ILSH), School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK. Electronic address:
Pioneering work in the chicken established that the initial development of the heart consists of two stages: the quick assembly of a beating heart, followed by the recruitment of cells from adjacent tissues to deliver the mature in-and outflow tract. Cells to build the primitive heart were dubbed the first heart field (FHF) cells, cells to be recruited later the second heart field (SHF) cells. The current view is that these cells represent distinct, maybe even pre-determined lineages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!