A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tree Species Diversity and Forest Edge Density Jointly Shape the Gut Microbiota Composition in Juvenile Great Tits (). | LitMetric

AI Article Synopsis

  • The study explores how forest structure and fragmentation impact the gut microbiome of wild great tit nestlings, revealing that environmental factors influence microbial diversity.
  • Using advanced techniques, the research analyzed gut microbiota from nestlings across various forest conditions, focusing on tree species and fragmentation.
  • Although the overall microbiome didn't significantly affect the birds’ immediate health, some specific bacteria were linked to lower fledging success, suggesting long-term implications for bird fitness.

Article Abstract

Despite the microbiome's key role in health and fitness, little is known about the environmental factors shaping the gut microbiome of wild birds. With habitat fragmentation being recognised as a major threat to biological diversity, we here determined how forest structure influences the bacterial species richness and diversity of wild great tit nestlings (). Using an Illumina metabarcoding approach which amplifies the 16S bacterial ribosomal RNA gene, we measured gut microbiota diversity and composition from 49 great tit nestlings, originating from 23 different nests that were located in 22 different study plots across a gradient of forest fragmentation and tree species diversity. Per nest, an average microbiome was determined on which the influence of tree species (composition and richness) and forest fragmentation (fragment area and edge density) was examined and whether this was linked to host characteristics (body condition and fledging success). We found an interaction effect of edge density with tree species richness or composition on both the microbial richness (alpha diversity: Chao1 and Shannon) and community structure (beta diversity: weighted and unweighted UniFrac). No significant short-term impact was observed of the overall faecal microbiome on host characteristics, but rather an adverse effect of specific bacterial genera on fledging success. These results highlight the influence of environmental factors on the microbial richness as well as the phylogenetic diversity during a life stage where the birds' microbiota is shaped, which could lead to long-term consequences for host fitness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959704PMC
http://dx.doi.org/10.3389/fmicb.2022.790189DOI Listing

Publication Analysis

Top Keywords

tree species
16
edge density
12
diversity
8
species diversity
8
gut microbiota
8
environmental factors
8
species richness
8
great tit
8
tit nestlings
8
forest fragmentation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!