Background: Accounting for 15-20% of all meningiomas, WHO grade II meningiomas represent an intermediate group regarding risk of tumor recurrence. However, even within this subgroup varying clinical courses are observed with potential occurrence of multiple recurrences. Recently, DNA methylation profiles showed their value for distinguishing biological behaviors in meningiomas. Therefore, aim of this study was to investigate DNA methylation profiles in WHO grade II meningiomas.

Methods: All patients that underwent resection of WHO grade II meningiomas between 1993 and 2015 were screened for a dismal course clinical course with ≥2 recurrences. These were matched to control cases with benign clinical courses without tumor recurrence. DNA methylation was assessed using the Infinium Methylation EPIC BeadChip microarray. Unsupervised hierarchical clustering was performed for identification of DNA methylation profiles associated with such a dismal clinical course.

Results: Overall, 11 patients with WHO grade II meningiomas with ≥2 recurrences (Group dismal) and matched 11 patients without tumor recurrence (Group benign) were identified. DNA methylation profiles revealed 3 clusters-one comprising only patients of group dismal, a second cluster comprising mainly patients from group benign and a third cluster comprising one group dismal and one group benign patient. Based on differential methylation pattern associations with the Wnt and the related cadherin signaling pathway was observed.

Conclusion: DNA methylation clustering showed remarkable differences between two matched subgroups of WHO grade II meningiomas. Thus, DNA methylation profiles may have the potential to support prognostic considerations regarding meningioma recurrence and radiotherapeutic treatment allocation after surgical resection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959647PMC
http://dx.doi.org/10.3389/fonc.2022.811729DOI Listing

Publication Analysis

Top Keywords

dna methylation
32
methylation profiles
20
grade meningiomas
16
clinical courses
12
tumor recurrence
12
group dismal
12
group benign
12
methylation
9
dna
8
≥2 recurrences
8

Similar Publications

DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer.

Acta Pharm Sin B

December 2024

Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.

encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.

View Article and Find Full Text PDF

Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is the most common type of breast cancer, primarily affecting women in the United States and across the world. This review summarizes key concepts related to IDC causes, treatment approaches, and the identification of biological markers for specific prognoses. Furthermore, we reviewed many studies, including those involving patients with IDC and ductal carcinoma in situ (DCIS) that progressed to IDC.

View Article and Find Full Text PDF

Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.

View Article and Find Full Text PDF

Somatic mutation as an explanation for epigenetic aging.

Nat Aging

January 2025

Program in Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA.

DNA methylation marks have recently been used to build models known as epigenetic clocks, which predict calendar age. As methylation of cytosine promotes C-to-T mutations, we hypothesized that the methylation changes observed with age should reflect the accrual of somatic mutations, and the two should yield analogous aging estimates. In an analysis of multimodal data from 9,331 human individuals, we found that CpG mutations indeed coincide with changes in methylation, not only at the mutated site but with pervasive remodeling of the methylome out to ±10 kilobases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!