Regression dynamic causal modeling (rDCM) is a novel and computationally highly efficient method for inferring effective connectivity at the whole-brain level. While face and construct validity of rDCM have already been demonstrated, here we assessed its test-retest reliability-a test-theoretical property of particular importance for clinical applications-together with group-level consistency of connection-specific estimates and consistency of whole-brain connectivity patterns over sessions. Using the Human Connectome Project dataset for eight different paradigms (tasks and rest) and two different parcellation schemes, we found that rDCM provided highly consistent connectivity estimates at the group level across sessions. Second, while test-retest reliability was limited when averaging over all connections (range of mean intraclass correlation coefficient 0.24-0.42 over tasks), reliability increased with connection strength, with stronger connections showing good to excellent test-retest reliability. Third, whole-brain connectivity patterns by rDCM allowed for identifying individual participants with high (and in some cases perfect) accuracy. Comparing the test-retest reliability of rDCM connectivity estimates with measures of functional connectivity, rDCM performed favorably-particularly when focusing on strong connections. Generally, for all methods and metrics, task-based connectivity estimates showed greater reliability than those from the resting state. Our results underscore the potential of rDCM for human connectomics and clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959103 | PMC |
http://dx.doi.org/10.1162/netn_a_00215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!