Periodicity Pitch Perception Part III: Sensibility and Pachinko Volatility.

Front Neurosci

Fraunhofer-Institut für Digitale Medientechnologie, Ilmenau, Germany.

Published: March 2022

Neuromorphic computer models are used to explain sensory perceptions. Auditory models generate cochleagrams, which resemble the spike distributions in the auditory nerve. Neuron ensembles along the auditory pathway transform sensory inputs step by step and at the end pitch is represented in auditory categorical spaces. In two previous articles in the series on periodicity pitch perception an extended auditory model had been successfully used for explaining periodicity pitch proved for various musical instrument generated tones and sung vowels. In this third part in the series the focus is on octopus cells as they are central sensitivity elements in auditory cognition processes. A powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike events are the inputs, triggering the impulse responses of the octopus cells. Efficient algorithms are developed and demonstrated to explain the behavior of octopus cells with a focus on a simple event-based hardware implementation of a layer of octopus neurons. The main finding is, that an octopus' cell model in a local receptive field fine-tunes to a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with synaptic pre-activation and the dendritic back-propagating signal as post condition. Successful learning explains away the teacher and there is thus no need for a temporally precise control of plasticity that distinguishes between learning and retrieval phases. Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment to specific trajectories in their local receptive fields, then unions of octopus cells are collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The model evaluation indicates an improvement in pitch estimation on a fixed time-scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959216PMC
http://dx.doi.org/10.3389/fnins.2022.736642DOI Listing

Publication Analysis

Top Keywords

octopus cells
20
periodicity pitch
12
pitch perception
8
auditory nerve
8
local receptive
8
pitch estimation
8
auditory
7
pitch
7
octopus
6
cells
5

Similar Publications

The present study describes the differentiation process of male germ cells in Octopus vulgaris, the morphology of sperm in the testis and spermatophore, and the sperm released after the spermatophoric reaction. During spermatogenesis, the male sperm cell gradually elongates from a round shape, with cytoplasm shifting toward the head and the acrosome forming. Additionally, in the spermatid stage, the flagellum develops within the posterior nuclear channel and extends outside the cytoplasm.

View Article and Find Full Text PDF

Neuronal segmentation in cephalopod arms.

Nat Commun

January 2025

Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA.

Prehensile arms are among the most remarkable features of the octopus, but little is known about the neural circuitry controlling arm movements. Here, we report on the cellular and molecular organization of the arm nervous system, focusing on its massive axial nerve cords (ANCs). We found that the ANC is segmented.

View Article and Find Full Text PDF

Aggregation-prone antimicrobial peptides target gram-negative bacterial nucleic acids and protein synthesis.

Acta Biomater

January 2025

Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

Article Synopsis
  • Aggregation of antimicrobial peptides (AMPs) can increase their effectiveness against bacteria by disrupting their cell structures, presenting a potential solution to antibiotic resistance.
  • Researchers focused on the cephalopod Octopus bimaculoides, which lacks known AMP genes, and utilized artificial intelligence to identify four aggregation-prone peptides (Oct-P1 to Oct-P4), with Oct-P2 showing a 90% reduction in bacterial viability.
  • The study revealed that Oct-P2 not only penetrates bacterial cells but also interacts with DNA, hindering gene expression, thus illustrating its promise as a template for developing new antimicrobial therapies.
View Article and Find Full Text PDF

Characterization of nitric oxide in Octopus maya nervous system and its potential role in sensory perception.

Biol Open

December 2024

Laboratorio de Neurofisiología Integrativa. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, C.P. 14370, México.

Article Synopsis
  • Nitric oxide is recognized as a key neurotransmitter in the olfactory and chemoreception systems of both invertebrates and vertebrates, indicating a long-evolved sensory detection mechanism.
  • Research specifically highlights the role of nitric oxide in molluscs, particularly octopuses, affecting their sensory integration and motor responses.
  • The study provides evidence of nitric oxide synthase present in neurons and fibers in Octopus maya, showing its anatomical localization in brain regions related to chemosensory processing.
View Article and Find Full Text PDF

High energetic cost of color change in octopuses.

Proc Natl Acad Sci U S A

November 2024

Department of Biological Sciences, Walla Walla University, College Place, WA 99324.

For many animals, color change is a critical adaptive mechanism believed to carry a substantial energetic cost. Yet, no study to date has directly measured the energy expenditure associated with this process. We examined the metabolic cost of color change in octopuses by measuring oxygen consumption in samples of excised octopus skin during periods of chromatophore expansion and contraction and then modeled metabolic demand over the whole octopus as a function of octopus mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!