Aim: The ability to predict outcomes can help clinicians to better triage and treat stroke patients. We aimed to build prediction models using clinical data at admission and discharge to assess predictors highly relevant to stroke outcomes.
Methods: A total of 37,094 patients from the Taiwan Stroke Registry (TSR) were enrolled to ascertain clinical variables and predict their mRS outcomes at 90 days. The performances (i.e., the area under the curves (AUCs)) of these independent predictors identified by logistic regression (LR) based on clinical variables were compared.
Results: Several outcome prediction models based on different patient subgroups were evaluated, and their AUCs based on all clinical variables at admission and discharge were 0.85-0.88 and 0.92-0.96, respectively. After feature selections, the input features decreased from 140 to 2-18 (including age of onset and NIHSS at admission) and from 262 to 2-8 (including NIHSS at discharge and mRS at discharge) at admission and discharge, respectively. With only a few selected key clinical features, our models can provide better performance than those previously reported in the literature.
Conclusion: This study proposed high performance prognostics outcome prediction models derived from a population-based nationwide stroke registry even with reduced LR-selected clinical features. These key clinical features can help physicians to better focus on stroke patients to triage for best outcome in acute settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963213 | PMC |
Genet Med
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:
Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical and Electrical Engineering, North University of China, Taiyuan, 030051, Shanxi, China.
Due to the sensitivity of the shaped charge jet to standoff and the complexity of its impact under lateral disturbances, this study aims to investigate the dynamic impact evolution of the jet influenced by standoff and lateral disturbances. A finite element model for the dynamic impact of shaped charge jets was established. Dynamic impact experiments were designed and conducted to validate the effectiveness of the numerical simulations.
View Article and Find Full Text PDFSci Rep
December 2024
School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering, Southeast University, Nanjing, 211189, China.
Collapsible loess soils, known for their significant volume reduction upon the wetting, pose critical challenges in the geotechnical engineering. The estimation of the wetting-induced settlement is crucial for the foundation design and the determination of the negative skin friction on the pile. In this paper, a new method is proposed to estimate the wetting induced collapse from the wetting soil-water characteristic curve (SWCC) and the index properties of the loess soils.
View Article and Find Full Text PDFBehav Res Methods
December 2024
ETSI de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense, 30, 28040, Madrid, Spain.
This study investigates the potential of large language models (LLMs) to estimate the familiarity of words and multi-word expressions (MWEs). We validated LLM estimates for isolated words using existing human familiarity ratings and found strong correlations. LLM familiarity estimates performed even better in predicting lexical decision and naming performance in megastudies than the best available word frequency measures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!