Newborn mammals, including piglets, exhibit natural heart regeneration after myocardial infarction (MI) on postnatal day 1 (P1), but this ability is lost by postnatal day 7 (P7). The electrophysiologic properties of this naturally regenerated myocardium have not been examined. We hypothesized that epicardial conduction is preserved after P1 MI in piglets. Yorkshire-Landrace piglets underwent left anterior descending coronary artery ligation at age P1 ( = 6) or P7 ( = 7), After 7 weeks, cardiac magnetic resonance imaging was performed with late gadolinium enhancement for analysis of fibrosis. Epicardial conduction mapping was performed using custom 3D-printed high-resolution mapping arrays. Age- and weight-matched healthy pigs served as controls ( = 6). At the study endpoint, left ventricular (LV) ejection fraction was similar for controls and P1 pigs (46.4 ± 3.0% vs. 40.3 ± 4.9%, = 0.132), but significantly depressed for P7 pigs (30.2 ± 6.6%, < 0.001 vs. control). The percentage of LV myocardial volume consisting of fibrotic scar was 1.0 ± 0.4% in controls, 9.9 ± 4.4% in P1 pigs ( = 0.002 vs. control), and 17.3 ± 4.6% in P7 pigs ( < 0.001 vs. control, = 0.007 vs. P1). Isochrone activation maps and apex activation time were similar between controls and P1 pigs (9.4 ± 1.6 vs. 7.8 ± 0.9 ms, = 0.649), but significantly prolonged in P7 pigs (21.3 ± 5.1 ms, < 0.001 vs. control, < 0.001 vs. P1). Conduction velocity was similar between controls and P1 pigs (1.0 ± 0.2 vs. 1.1 ± 0.4 mm/ms, = 0.852), but slower in P7 pigs (0.7 ± 0.2 mm/ms, = 0.129 vs. control, = 0.052 vs. P1). Overall, our data suggest that epicardial conduction dynamics are conserved in the setting of natural heart regeneration in piglets after P1 MI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959497 | PMC |
http://dx.doi.org/10.3389/fcvm.2022.829546 | DOI Listing |
Bioact Mater
April 2025
School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China.
The cardiac microenvironment profoundly restricts the efficacy of myocardial regeneration tactics for the treatment of myocardial infarction (MI). A prospective approach for MI therapeutics encompasses the combined strategy of scavenging reactive oxygen species (ROS) to alleviate oxidative stress injury and facilitating macrophage polarization towards the regenerative M2 phenotype. In this investigation, we fabricated a ROS-sensitive hydrogel engineered to deliver our previously engineered IL-1β-VHH for myocardial restoration.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
The aim of this study is to conduct a comprehensive bibliometric analysis of CT-based adipose tissue imaging related to coronary artery disease (CAD) to investigate the dynamic development of this field. Web of Science Core Collection was used as our data source to identify relevant documents limited to articles or review articles and written in English with no time restrictions. Then we analyzed the whole trend of publications and utilized VOSviewer and Bibliometrix to conduct a bibliometric analysis including citations, keywords, countries, institutions, authors as well as co-citation analyses of cited references and sources.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA. Electronic address:
Direct pacing of the mid myocardium where re-entry originates can be used to prevent ventricular arrhythmias and circumvent the need for painful defibrillation or cardiac ablation. However, there are no pacing electrodes small enough to navigate the coronary veins that cross these culprit scar regions. To address this need, we have developed an injectable ionically conductive hydrogel electrode that can fill the epicardial coronary veins and transform them into flexible electrodes.
View Article and Find Full Text PDFJACC Clin Electrophysiol
December 2024
Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:
Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.
Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.
Front Physiol
December 2024
Biomedical Science Department, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.
Myocardial ischemia causes the production and release of metabolites such as bradykinin, which stimulates cardiac spinal sensory afferents, causing chest pain and an increase in sympathetic activity referred to as the cardiogenic sympathetic afferent reflex. While the brain stem nuclei, such as the nucleus tractus solitarius and rostral ventrolateral medulla, are essential in the cardiogenic sympathetic afferent reflex, the role of other supramedullary nuclei in the cardiogenic sympathetic afferent reflex are not clear. The dorsomedial hypothalamic nucleus (DMH) is involved in cardiovascular sympathetic regulation and plays an important role in the sympathetic response to stressful stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!