Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals. The particular virus causing FMD disease is called FMD virus and is a member of the Aphthovirus genus in the Picornaviridae family. The FMD virus has an 8500 nt long single strain positive RNA genome with one open reading frame (ORF) trapped in an icosahedral capsid protein. This virus genome doesn't have proofreading property which leads to high mutagenesis. It has seven serotypes, including O, A, ASIA, SAT1, SAT2, and C serotypes, as well as many subtypes. Iran is an endemic region for foot-and-mouth disease. Vaccination of susceptible animals with an inactivated whole-virus vaccine is the only way to control the epidemic in many developing countries. Today, conventionally attenuated and killed virus vaccines are being used worldwide. In Iran, animals have been vaccinated every 105 days with an inactivated FMD vaccine. Although commercially available FMD vaccines are effective, they provide short-term immunity requiring regular boosters. A new FMD vaccine is needed to improve immunization, safety, and long-term immune responses. A synthetic peptide vaccine is one of the safe and important vaccines. Peptide vaccine has low immunogenicity, requiring strong adjuvants. Nanoliposomes can be used as new adjuvants to improve immune response. In the current study, nanoliposomal carriers were selected using Dimyristoylphosphatidylcholine (DMPC), dimyristoyl phosphoglycerol (DMPG), and Cholesterol (Chol) as an adjuvant containing two immunodominant synthetic FMDV peptides. The liposomal formulations were characterized by various physicochemical properties. The size, zeta potential, and encapsulation efficiency were optimized, and the obtained nanoliposome was suitable as a vaccine. The efficacy of vaccines has been evaluated in guinea pigs as animal models. Indirect ELISA was used to detect FMDV-specific IgG. The obtained results indicated that although antibody titer was observed, the amount was lower compared to the groups that received inactivated virus-containing liposomes. In addition, the results showed that liposome was an appropriate adjuvant, compared to other adjuvants, such as Alum and Freund, and can act as a depot and induce an immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934104PMC
http://dx.doi.org/10.22092/ari.2021.352498.1566DOI Listing

Publication Analysis

Top Keywords

foot-and-mouth disease
8
fmd virus
8
fmd vaccine
8
peptide vaccine
8
immune response
8
vaccine
7
fmd
7
virus
5
immunity evaluation
4
evaluation experimental
4

Similar Publications

Background: HFMD is a common infectious disease that is prevalent worldwide. In many provinces in China, there have been outbreaks and epidemics of whooping cough, posing a threat to public health.

Purpose: It is crucial to grasp the epidemiological characteristics of HFMD in Quzhou and establish a prediction model for HFMD to lay the foundation for early warning of HFMD.

View Article and Find Full Text PDF

Introduction: Many countries use commercial foot-and-mouth disease (FMD) vaccines to prevent FMD pandemics, but these vaccines have disadvantages, such as repeated vaccinations due to the short persistence of antibody (Ab) titers and incomplete host defense despite high Ab titers. To address these shortcomings, we aimed to develop a novel FMD vaccine containing furfurman as an adjuvant.

Method: To demonstrate the efficacy of the test vaccine, adaptive immunity was evaluated by measuring Ab and neutralizing Ab titers and host defense against viral infections in experimental and target animals.

View Article and Find Full Text PDF

Background: The hand, foot and mouth disease (HFMD) was caused by species of Enterovirus A and Enterovirus B in the Asian-Pacific region. Broad-spectrum monoclonal antibodies (mAb) that can bind multiple serotypes of enteroviruses have gradually become a research hotspot in the diagnosis, prevention and treatment of HFMD.

Methods: In this study, a mAb 1H4 was obtained using monoclonal antibody technology by immunizing purified virus particles of Coxsackievirus A5 (CV-A5).

View Article and Find Full Text PDF

Development of a capsid protein-based ELISA for the detection of PCV2 antibodies in swine serum.

Pol J Vet Sci

December 2024

Key Laboratory of Animal Pathogen and Biosafety Education of the Ministry of Education, Zhengzhou 450000, China.

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!