A coupled methodology of nitrogen isotopes, hydrogeochemical characterization, multivariate statistical analysis, and SIAR Bayesian modeling has been employed to identify the sources of NO and N transformation processes in three alluvial aquifers (Schinos, Thiva, and Central Evia) located in central Greece where geogenic Cr(VI) co-occurs with agricultural activity and rural development. Hexavalent chromium concentrations exceed 50 μg/L in many sampling stations of the studied groundwater bodies, while nitrate contamination is evident in all three study areas with concentrations well over 50 mg/L. The mean δN-NO and δΟ-NO values are 6.67 ± 1.77‰ and 2.68 ± 1.77‰ in C. Evia, 8.72 ± 4.74‰ and 3.96 ± 4.57‰ in Schinos and 4.44 ± 1.71‰ and 2.91 ± 1.02‰ in Thiva, respectively. Domestic sewage and N-bearing fertilizers are contributing in various degrees to the observed nitrification which is the dominant transformation process of N in the studied aquifers. Multivariate statistics indicated that the main processes identified in the study areas are salinization, silicate dissolution, and groundwater contamination due to fertilizer use. It is suggested that ultramafic rock-related alluvial aquifers must be closely monitored in terms of nutrient inputs as an effective measure for controlling Cr(VI) release in groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-19837-0 | DOI Listing |
Chemosphere
January 2025
School of Water Resources Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India. Electronic address:
Groundwater toxicity and water level depletion are serious concerns today. Assessing groundwater quality (GWQ) is crucial for effective planning and management due to increasing demands for drinking and irrigation water. Therefore, this study aims to analyze groundwater hydrochemistry, variability, and factors influencing quality for drinking and irrigation purposes using indices and models.
View Article and Find Full Text PDFSci Rep
January 2025
School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.
Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, China.
Understanding the geochemical mechanisms governing hexavalent chromium (Cr(VI)) in groundwater is essential for mitigating health risks. However, the processes driving Cr(VI) accumulation and migration in loess regions remain insufficiently understood. This study investigated the occurrence, release, and migration mechanisms of Cr(VI) across different groundwater environmental units (GEUs) in the south-central Loess Plateau, China.
View Article and Find Full Text PDFWater Res
March 2025
GNS Science, New Zealand.
Source protection zone delineation has evolved over the past decades from fixed radius or analytical and numerical methods which do not consider uncertainty, to more complex stochastic numerical approaches. In this paper we explore options for delineating a source protection zone, while considering the inherent uncertainty involved in characterizing hydraulic conductivity. We consider a representative pumping well in an unconfined alluvial aquifer under steady-state flow conditions, with the hydraulic conductivity distribution inferred from borehole lithology data in the West Melton area near Christchurch, New Zealand.
View Article and Find Full Text PDFEnviron Geochem Health
December 2024
Shandong Institute of Geological Survey, Jinan, 250013, China.
Fluoride (F) is the most important inorganic pollutant in groundwater that affects human health, and analyzing the causes of high-fluoride groundwater is a prerequisite for protecting the health of residents. To comprehensively understand the enrichment characteristics of groundwater in the high-fluoride areas, this study systematically investigated the concentrations of fluoride in Gaomi City, a typical study area in the Jiaolai Plain and explored the spatiotemporal distribution patterns, enrichment mechanisms, and the probabilistic health risk associated with F. The results indicate that there is serious fluorine pollution in groundwater, which is mainly concentrated in the alluvial plain in the north and affected by topographical and aquifer characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!