A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cattaneo-Christov heat flow model for copper-water nanofluid heat transfer under Marangoni convection and slip conditions. | LitMetric

This report is devoted to the study of the flow of MHD nanofluids through a vertical porous plate with a temperature-dependent surface tension using the Cattaneo-Christov heat flow model. The energy equation was formulated using the Cattaneo-Christov heat flux model instead of Fourier's law of heat conduction. The Tiwari-Das model was used to take into account the concentration of nanoparticles when constructing the momentum equation. The problem is described mathematically using the boundary layer approach as a PDE, which is then converted into an ODE with the help of the transformation process. The solution finding process was completed by running the bvp4c code in MATLAB. A quantitative analysis of the influence of some newly occurring parameters on physical quantities was carried out using graphics. The addition of nanoparticles to the base fluid leads to an increase in both skin friction and thermal conductivity. The increase in thermal conductivity is the advantage, while the increase in skin friction is the disadvantage of the nanoparticle concentration. Marangoni convection has proven to be one of the most cost-effective tools available that can reduce skin friction. Marangoni convection improves the heat transfer coefficient during suction but decreases the heat transfer coefficient during the injection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967848PMC
http://dx.doi.org/10.1038/s41598-022-09275-wDOI Listing

Publication Analysis

Top Keywords

cattaneo-christov heat
12
heat transfer
12
marangoni convection
12
skin friction
12
heat flow
8
flow model
8
increase skin
8
thermal conductivity
8
transfer coefficient
8
heat
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!