Single-Stranded DNA-Encoded Gold Nanoparticle Clusters as Programmable Enzyme Equivalents.

J Am Chem Soc

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: April 2022

Nanozymes have emerged as a class of novel catalytic nanomaterials that show great potential to substitute natural enzymes in various applications. Nevertheless, spatial organization of multiple subunits in a nanozyme to rationally engineer its catalytic properties remains to be a grand challenge. Here, we report a DNA-based approach to encode the organization of gold nanoparticle clusters (GNCs) for the construction of programmable enzyme equivalents (PEEs). We find that single-stranded (ss-) DNA scaffolds can self-fold into nanostructures with prescribed poly-adenine (polyA) loops and double-stranded stems and that the polyA loops serve as specific sites for seed-free nucleation and growth of GNCs with well-defined particle numbers and interparticle spaces. A spectrum of GNCs, ranging from oligomers with discrete particle numbers (2-4) to polymer-like chains, are in situ synthesized in this manner. The polymeric GNCs with multiple spatially organized nanoparticles as subunits show programmable peroxidase-like catalytic activity that can be tuned by the scaffold size and the inter-polyA spacer length. This study thus opens new routes to the rational design of nanozymes for various biological and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c13116DOI Listing

Publication Analysis

Top Keywords

gold nanoparticle
8
nanoparticle clusters
8
programmable enzyme
8
enzyme equivalents
8
polya loops
8
particle numbers
8
single-stranded dna-encoded
4
dna-encoded gold
4
clusters programmable
4
equivalents nanozymes
4

Similar Publications

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

Adv Healthc Mater

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.

View Article and Find Full Text PDF

Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.

View Article and Find Full Text PDF

Quantitative determination of leptin hormone using gold nanoparticle-based lateral flow assay.

Mikrochim Acta

January 2025

Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Türkiye.

A lateral flow assay (LFA) has been developed that can be used in point-of-care (PoC) use for the sensitive determination of leptin hormone. The limit of detection value was 0.158 ng/mL and the limit of quantification value was 0.

View Article and Find Full Text PDF

A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!