In this study, an external cavity-quantum cascade laser-based mid-infrared (IR) spectrometer was applied for in-line monitoring of proteins from preparative ion-exchange chromatography. The large optical path length of 25 μm allowed for robust spectra acquisition in the broad tuning range between 1350 and 1750 cm, covering the most important spectral region for protein secondary structure determination. A significant challenge was caused by the overlapping mid-IR bands of proteins and changes in the background absorption of water due to the NaCl gradient. Implementation of advanced background compensation strategies resulted in high-quality protein spectra in three different model case studies. In Case I, a reference blank run was directly subtracted from a sample run with the same NaCl gradient. Case II and III included sample runs with different gradient profiles than the one from the reference run. Here, a novel compensation approach based on a reference spectra matrix was introduced, where the signal from the conductivity detector was employed for correlating suitable reference spectra for correction of the sample run spectra. With this method, a single blank run was sufficient to correct various gradient profiles. The obtained IR spectra of hemoglobin and β-lactoglobulin were compared to off-line reference measurements, showing excellent agreement for all case studies. Moreover, the concentration values obtained from the mid-IR spectrometer agreed well with conventional UV detectors and high-performance liquid chromatography off-line measurements. LC-QCL-IR coupling thus holds high potential for replacing laborious and time-consuming off-line methods for protein monitoring in complex downstream processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008697PMC
http://dx.doi.org/10.1021/acs.analchem.1c05191DOI Listing

Publication Analysis

Top Keywords

in-line monitoring
8
monitoring proteins
8
proteins preparative
8
preparative ion-exchange
8
ion-exchange chromatography
8
nacl gradient
8
case studies
8
gradient profiles
8
reference spectra
8
spectra
6

Similar Publications

This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.

View Article and Find Full Text PDF

Objectives: To assess the geographical equity in Ethiopian infants' exclusive breastfeeding at 5 months and dietary diversity at 12 months and whether social factors explained the spatial inequities.

Design: Secondary analysis of a birth cohort study.

Setting: Analysis of data from the Ethiopian Performance Monitoring for Action panel study conducted from July 2020 to August 2021 in five regions (ie, Oromia, Amhara, Afar and Southern Nations, Nationalities and Peoples regions and the Addis Ababa City administration).

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a poor prognosis for survival. Risk factors include alcohol and tobacco abuse and infection with human papilloma virus (HPV). To enhance anti-tumor immune responses immunotherapeutic approaches are approved for recurrent metastatic disease but only approx.

View Article and Find Full Text PDF

Background: Human Apolipoprotein (APOE) has three isoforms, ε2, ε3, and ε4 among which ε4 (APOE4) confers the highest risk for late-onset Alzheimer's disease (AD). APOE4 is also the most prone to aggregate among APOE isoforms. Current evidence strongly suggests that APOE aggregation leads to neuronal dysfunction and eventually to AD.

View Article and Find Full Text PDF

Validated LC-MS/MS Method for the Determination of Paxalisib on Mouse Dried Blood Spots: An Application to Pharmacokinetic Study in Mice.

Biomed Chromatogr

February 2025

Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Medchal-Malkajgiri, Hyderabad, Telangana, India.

Paxalisib is a dual PI3K/mTOR inhibitor, being used in advanced cancer treatment. In this research, we report a validated LC-MS/MS method for quantifying paxalisib from mouse dried blood spot (DBS). We validated the method in-line with the FDA guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!