Background: Peritoneal fibrosis induced by various factors during peritoneal dialysis (PD) can eventually lead to ultrafiltration failure and termination of PD treatment. The existing animal models are caused by a single stimulus, and cannot accurately simulate complex pathogenesis of peritoneal injury and fibrosis. We aim to develop an efficient and realistic mouse model of PD-associated peritoneal injury using daily intraperitoneal injection (I.P.) of human peritonitis PD effluent.
Methods: Eight-week-old male C57BL/6 mice were classified into six groups: saline control; 2.5% PD fluid; 2.5% PD fluid + lipopolysaccharide (LPS); 4.25% PD fluid; 4.25% PD fluid + LPS; and peritonitis effluent. Mice received daily I.P. for 6 weeks, and were sacrificed to determine peritoneal structural and functional damage, inflammation, and fibrosis.
Results: Mice in the peritonitis effluent group had low mortality. The submesothelial thickness in the peritonitis effluent group was significantly greater than that in the 2.5% PD fluid group. The peritonitis effluent group had increased expression of fibrosis markers (α-SMA, Collagen I, etc.), neutrophil granulocytes (MPO), and macrophages (CD68, F4/80) in the peritoneum based on immunohistochemical staining; and significantly higher expression of inflammation markers (IL-1β, IL-6, etc.) and fibrosis markers (TGF-β1, α-SMA, etc.) based on real-time qPCR. Modified peritoneal equilibration tests (PET) demonstrated that I.P. of peritonitis effluent reduced peritoneal ultrafiltration.
Conclusion: Our novel animal model of PD-associated peritoneal injury faithfully simulates the clinical pathophysiological process. This animal model may be useful for study of the pathogenesis of PD-associated peritoneal injury and identification of novel treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10157-022-02208-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!